Perform a nlevel DTCWT decompostion on a 1D column vector X (or on the columns of a matrix X).
Parameters:  

Returns Yl:  The real lowpass image from the final level 
Returns Yh:  A tuple containing the (N, M, 6) shape complex highpass subimages for each level. 
Returns Yscale:  If include_scale is True, a tuple containing real lowpass coefficients for every scale. 
If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).
Example:
# Performs a 5level transform on the real image X using the 13,19tap
# filters for level 1 and the Qshift 14tap filters for levels >= 2.
Yl, Yh = dtwavexfm(X,5,'near_sym_b','qshift_b')
Perform an nlevel dualtree complex wavelet (DTCWT) 1D reconstruction.
Parameters:  

Returns Z:  Reconstructed real array. 
The lth element of gain_mask is gain for wavelet subband at level l. If gain_mask[l] == 0, no computation is performed for band l. Default gain_mask is all ones. Note that l is 0indexed.
If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).
Example:
# Performs a reconstruction from Yl,Yh using the 13,19tap filters
# for level 1 and the Qshift 14tap filters for levels >= 2.
Z = dtwaveifm(Yl, Yh, 'near_sym_b', 'qshift_b')
Perform a nlevel DTCWT2D decompostion on a 2D matrix X.
Parameters:  

Returns Yl:  The real lowpass image from the final level 
Returns Yh:  A tuple containing the complex highpass subimages for each level. 
Returns Yscale:  If include_scale is True, a tuple containing real lowpass coefficients for every scale. 
If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).
Example:
# Performs a 3level transform on the real image X using the 13,19tap
# filters for level 1 and the Qshift 14tap filters for levels >= 2.
Yl, Yh = dtwavexfm2(X, 3, 'near_sym_b', 'qshift_b')
Perform an nlevel dualtree complex wavelet (DTCWT) 2D reconstruction.
Parameters:  

Returns Z:  Reconstructed real array 
The (d, l)th element of gain_mask is gain for subband with direction d at level l. If gain_mask[d,l] == 0, no computation is performed for band (d,l). Default gain_mask is all ones. Note that both d and l are zeroindexed.
If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).
Example:
# Performs a 3level reconstruction from Yl,Yh using the 13,19tap
# filters for level 1 and the Qshift 14tap filters for levels >= 2.
Z = dtwaveifm2(Yl, Yh, 'near_sym_b', 'qshift_b')
Perform a nlevel DTCWT3D decompostion on a 3D matrix X.
Parameters:  

Returns Yl:  The real lowpass image from the final level 
Returns Yh:  A tuple containing the complex highpass subimages for each level. 
Each element of Yh is a 4D complex array with the 4th dimension having size 28. The 3D slice Yh[l][:,:,:,d] corresponds to the complex higpass coefficients for direction d at level l where d and l are both 0indexed.
If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).
There are two values for ext_mode, either 4 or 8. If ext_mode = 4, check whether 1st level is divisible by 2 (if not we raise a ValueError). Also check whether from 2nd level onwards, the coefs can be divided by 4. If any dimension size is not a multiple of 4, append extra coefs by repeating the edges. If ext_mode = 8, check whether 1st level is divisible by 4 (if not we raise a ValueError). Also check whether from 2nd level onwards, the coeffs can be divided by 8. If any dimension size is not a multiple of 8, append extra coeffs by repeating the edges twice.
If discard_level_1 is True the highpass coefficients at level 1 will be discarded. (And, in fact, will never be calculated.) This turns the transform from being 8:1 redundant to being 1:1 redundant at the cost of nolonger allowing perfect reconstruction. If this option is selected then Yh[0] will be None. Note that dtwaveifm3() will accepts Yh[0] being None and will treat it as being zero.
Example:
# Performs a 3level transform on the real 3D array X using the 13,19tap
# filters for level 1 and the Qshift 14tap filters for levels >= 2.
Yl, Yh = dtwavexfm3(X, 3, 'near_sym_b', 'qshift_b')
Perform an nlevel dualtree complex wavelet (DTCWT) 3D reconstruction.
Parameters:  

Returns Z:  Reconstructed real image matrix. 
If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).
There are two values for ext_mode, either 4 or 8. If ext_mode = 4, check whether 1st level is divisible by 2 (if not we raise a ValueError). Also check whether from 2nd level onwards, the coefs can be divided by 4. If any dimension size is not a multiple of 4, append extra coefs by repeating the edges. If ext_mode = 8, check whether 1st level is divisible by 4 (if not we raise a ValueError). Also check whether from 2nd level onwards, the coeffs can be divided by 8. If any dimension size is not a multiple of 8, append extra coeffs by repeating the edges twice.
Example:
# Performs a 3level reconstruction from Yl,Yh using the 13,19tap
# filters for level 1 and the Qshift 14tap filters for levels >= 2.
Z = dtwaveifm3(Yl, Yh, 'near_sym_b', 'qshift_b')
Load level 1 wavelet by name.
Parameters:  name – a string specifying the wavelet family name 

Returns:  a tuple of vectors giving filter coefficients 
Name  Wavelet 

antonini  Antonini 9,7 tap filters. 
legall  LeGall 5,3 tap filters. 
near_sym_a  NearSymmetric 5,7 tap filters. 
near_sym_b  NearSymmetric 13,19 tap filters. 
Return a tuple whose elements are a vector specifying the h0o, g0o, h1o and g1o coefficients.
Raises: 


Load level >=2 wavelet by name,
Parameters:  name – a string specifying the wavelet family name 

Returns:  a tuple of vectors giving filter coefficients 
Name  Wavelet 

qshift_06  Quarter Sample Shift Orthogonal (QShift) 10,10 tap filters, (only 6,6 nonzero taps). 
qshift_a  Qshift 10,10 tap filters, (with 10,10 nonzero taps, unlike qshift_06). 
qshift_b  QShift 14,14 tap filters. 
qshift_c  QShift 16,16 tap filters. 
qshift_d  QShift 18,18 tap filters. 
Return a tuple whose elements are a vector specifying the h0a, h0b, g0a, g0b, h1a, h1b, g1a and g1b coefficients.
Raises: 


Parameters: 


Returns:  (Px4) array of P keypoints in image coordinates 
Warning
The interface and behaviour of this function is the subject of an open research project. It is provided in this release as a preview of forthcoming functionality but it is subject to change between releases.
The rows of the returned keypoint array give the x coordinate, y coordinate, scale and keypoint energy. The rows are sorted in order of decreasing keypoint energy.
If refine_positions is True then the positions (and energy) of the keypoints will be refined to subpixel accuracy by fitting a quadratic patch. If refine_positions is False then the keypoint locations will be those corresponding directly to pixelwise maxima of the subband images.
The max_points and threshold parameters are cumulative: if both are specified then the max_points greatest energy keypoints with energy greater than threshold will be returned.
Usually the keypoint energies returned from the finest scale level are dominated by noise and so one usually wants to specify skip_levels to be 1 or 2. If skip_levels is 0 then all levels will be used to compute keypoint energy.
The upsample_subbands and upsample_keypoint_energy parameters are used to control whether the individual subband coefficients and/org the keypoint energy map are upscaled by 2 before finding keypoints. If these parameters are None then no corresponding upscaling is performed. If nonNone they specify the upscale method as outlined in dtcwt.sampling.upsample().
If method is None, the default 'fauqueur' method is used.
Name  Description  Parameters used 

fauqueur  Geometric mean of absolute values[1]  alpha, beta 
bendale  Minimum absolute value[2]  none 
kingsbury  Crossproduct of orthogonal subbands  kappa 
[1] Julien Fauqueur, Nick Kingsbury, and Ryan Anderson. Multiscale Keypoint Detection using the DualTree Complex Wavelet Transform. 2006 International Conference on Image Processing, pages 16251628, October 2006. ISSN 15224880. doi: 10.1109/ICIP.2006.312656. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4106857.
[2] Pashmina Bendale, Bill Triggs, and Nick Kingsbury. Multiscale Keypoint Analysis based on Complex Wavelets. In British Machine Vision Conference (BMVC), 2010. http://wwwsigproc.eng.cam.ac.uk/~pb397/publications/BTK_BMVC_2010_abstract.pdf.
Rescaling and resampling high and lowpass subbands.
Sample image at (x,y) given by elements of xs and ys. Both xs and ys must have identical shape and output will have this same shape. The location (x,y) refers to the centre of im[y,x]. Samples at fractional locations are calculated using the method specified by method (or 'lanczos' if method is None.)
Parameters: 


Raises ValueError:  
if xs and ys have differing shapes 
As sample() except that the highpass image is first phase shifted to be centred on approximately DC.
Return a resampled version of im scaled to shape.
Since the centre of pixel (x,y) has coordinate (x,y) the extent of im is actually \(x \in (0.5, w0.5]\) and \(y \in (0.5, h0.5]\) where (y,x) is im.shape. This returns a sampled version of im that has the same extent as a shapesized array.
As rescale() except that the highpass image is first phase shifted to be centred on approximately DC.
Specialised function to upsample an image by a factor of two using a specified sampling method. If image is an array of shape (NxMx...) then the output will have shape (2Nx2Mx...). Only rows and columns are upsampled, depth axes and greater are interpolated but are not upsampled.
Parameters: 


If method is None, the default sampling method 'lanczos' is used. The following sampling methods are supported:
Name  Description 

nearest  Nearestneighbour sampling 
bilinear  Bilinear sampling 
lanczos  Lanczos sampling with window radius of 3 
As upsample() except that the highpass image is first phase rolled so that the filter has approximate DC centre frequency. The upshot is that this is the function to use when resampling complex subband images.
A normal user should not need to call these functions but they are documented here just in case you do.
Return an appropriate complex data type depending on the type of X. If X is already complex, return that, if it is floating point return a complex type of the appropriate size and if it is integer, choose an complex floating point type depending on the result of numpy.asfarray().
Return v as a column vector with shape (N,1).
Similar to numpy.asfarray() except that this function tries to preserve the original datatype of X if it is already a floating point type and will pass floating point arrays through directly without copying.
Filter the columns of image X using the two filters ha and hb = reverse(ha). ha operates on the odd samples of X and hb on the even samples. Both filters should be even length, and h should be approx linear phase with a quarter sample advance from its mid pt (i.e. \(h(m/2) > h(m/2 + 1)\)).
ext top edge bottom edge ext
Level 1: !  !  !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a
Level 2: !  !  !
+q filt on x b b a a a a b b
q filt on o a a b b b b a a
The output is decimated by two from the input sample rate and the results from the two filters, Ya and Yb, are interleaved to give Y. Symmetric extension with repeated end samples is used on the composite X columns before each filter is applied.
Raises ValueError if the number of rows in X is not a multiple of 4, the length of ha does not match hb or the lengths of ha or hb are noneven.
Filter the columns of image X using filter vector h, without decimation. If len(h) is odd, each output sample is aligned with each input sample and Y is the same size as X. If len(h) is even, each output sample is aligned with the mid point of each pair of input samples, and Y.shape = X.shape + [1 0].
Parameters: 


Returns Y:  the filtered image. 
Filter the columns of image X using the two filters ha and hb = reverse(ha). ha operates on the odd samples of X and hb on the even samples. Both filters should be even length, and h should be approx linear phase with a quarter sample advance from its mid pt (i.e :math:`h(m/2) > h(m/2 + 1)).
ext left edge right edge ext
Level 2: !  !  !
+q filt on x b b a a a a b b
q filt on o a a b b b b a a
Level 1: !  !  !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a
The output is interpolated by two from the input sample rate and the results from the two filters, Ya and Yb, are interleaved to give Y. Symmetric extension with repeated end samples is used on the composite X columns before each filter is applied.
Reflect the values in matrix x about the scalar values minx and maxx. Hence a vector x containing a long linearly increasing series is converted into a waveform which ramps linearly up and down between minx and maxx. If x contains integers and minx and maxx are (integers + 0.5), the ramps will have repeated max and min samples.