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CHAPTER 1

Getting Started

This library provides support for computing 1D, 2D and 3D dual-tree complex wavelet transforms and their inverse in
Python along with some signal processing algorithms which make use of the DTCWT.

This section will guide you through using the dtcwt library. See API Reference for full details on the library’s API.

1.1 Installation

The easiest way to install dtcwt is via easy_install or pip:

$ pip install dtcwt

If you want to check out the latest in-development version, look at the project’s GitHub page. Once checked out,
installation is based on setuptools and follows the usual conventions for a Python project:

$ python setup.py install

(Although the develop command may be more useful if you intend to perform any significant modification to the
library.) A test suite is provided so that you may verify the code works on your system:

$ python setup.py nosetests

This will also write test-coverage information to the cover/ directory.

1.1.1 Building the documentation

There is a pre-built version of this documentation available online and you can build your own copy via the Sphinx
documentation system:

$ python setup.py build_sphinx

Compiled documentation may be found in build/docs/html/.
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CHAPTER 2

Performing the DTCWT

2.1 1D transform

This example generates two 1D random walks and demonstrates reconstructing them using the forward and inverse 1D
transforms. Note that :py:func‘dtcwt.Transform1d.forward‘ and dtcwt.Transform1d.inverse() will trans-
form columns of an input array independently

from matplotlib.pylab import *
import dtcwt

# Generate a 300x2 array of a random walk
vecs = np.cumsum(np.random.rand(300,2) - 0.5, 0)

# Show input
figure()
plot(vecs)
title(’Input’)

# 1D transform, 5 levels
transform = dtcwt.Transform1d()
vecs_t = transform.forward(vecs, nlevels=5)

# Show level 2 highpass coefficient magnitudes
figure()
plot(np.abs(vecs_t.highpasses[1]))
title(’Level 2 wavelet coefficient magnitudes’)

# Show last level lowpass image
figure()
plot(vecs_t.lowpass)
title(’Lowpass signals’)

# Inverse
vecs_recon = transform.inverse(vecs_t)

# Show output
figure()
plot(vecs_recon)
title(’Output’)

# Show error
figure()
plot(vecs_recon - vecs)

3
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title(’Reconstruction error’)

print(’Maximum reconstruction error: {0}’.format(np.max(np.abs(vecs - vecs_recon))))
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2.2 2D transform

Using the pylab environment (part of matplotlib) we can perform a simple example where we transform the standard
‘Lena’ image and show the level 2 wavelet coefficients:

# Load the Lena image
lena = datasets.lena()

# Show lena
figure(1)
imshow(lena, cmap=cm.gray, clim=(0,1))

import dtcwt
transform = dtcwt.Transform2d()

# Compute two levels of dtcwt with the defaul wavelet family
lena_t = transform.forward(lena, nlevels=2)

# Show the absolute images for each direction in level 2.
# Note that the 2nd level has index 1 since the 1st has index 0.
figure(2)
for slice_idx in range(lena_t.highpasses[1].shape[2]):

subplot(2, 3, slice_idx)

8 Chapter 2. Performing the DTCWT
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imshow(np.abs(lena_t.highpasses[1][:,:,slice_idx]), cmap=cm.spectral, clim=(0, 1))

# Show the phase images for each direction in level 2.
figure(3)
for slice_idx in range(lena_t.highpasses[1].shape[2]):

subplot(2, 3, slice_idx)
imshow(np.angle(lena_t.highpasses[1][:,:,slice_idx]), cmap=cm.hsv, clim=(-np.pi, np.pi))
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2.3 3D transform

In the examples below I assume you’ve imported pyplot and numpy and, of course, the dtcwt library itself

from matplotlib.pylab import *
import dtcwt

We can demonstrate the 3D transform by generating a 64x64x64 array which contains the image of a sphere

GRID_SIZE = 64
SPHERE_RAD = int(0.45 * GRID_SIZE) + 0.5

grid = np.arange(-(GRID_SIZE>>1), GRID_SIZE>>1)
X, Y, Z = np.meshgrid(grid, grid, grid)
r = np.sqrt(X*X + Y*Y + Z*Z)

sphere = 0.5 + 0.5 * np.clip(SPHERE_RAD-r, -1, 1)

trans = dtcwt.Transform3d()
sphere_t = trans.forward(sphere, nlevels=2)

The function returns a dtcwt.Pyramid instance containing the lowpass image and a tuple of complex highpass
coefficients

2.3. 3D transform 11
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>>> print(sphere_t.lowpass.shape)
(16, 16, 16)
>>> for highpasses in sphere_t.highpasses:
... print(highpasses.shape)
(32, 32, 32, 28)
(16, 16, 16, 28)
(8, 8, 8, 28)

Performing the inverse transform should result in perfect reconstruction

>>> Z = trans.inverse(sphere_t)
>>> print(np.abs(Z - sphere).max()) # Should be < 1e-12
8.881784197e-15

If you plot the locations of the large complex coefficients, you can see the directional sensitivity of the transform

from mpl_toolkits.mplot3d import Axes3D

figure()
imshow(sphere[:,:,GRID_SIZE>>1], interpolation=’none’, cmap=cm.gray)
title(’2d slice from input sphere’)

# Plot large magnitude wavelet coefficients’ position in 3D.

figure(figsize=(16,9))
Yh = sphere_t.highpasses
nplts = Yh[-1].shape[3]
nrows = np.ceil(np.sqrt(nplts))
ncols = np.ceil(nplts / nrows)
W = np.max(Yh[-1].shape[:3])
for idx in range(Yh[-1].shape[3]):

C = np.abs(Yh[-1][:,:,:,idx])
ax = gcf().add_subplot(nrows, ncols, idx+1, projection=’3d’)
ax.set_aspect(’equal’)
good = C > 0.2*C.max()
x,y,z = np.nonzero(good)
ax.scatter(x, y, z, c=C[good].ravel())
ax.auto_scale_xyz((0,W), (0,W), (0,W))

tight_layout()

12 Chapter 2. Performing the DTCWT
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For a further directional sensitivity example, see Showing 3D Directional Sensitivity.
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2.4 Variant transforms

In addition to the basic 1, 2 and 3 dimensional DT-CWT, this library also supports a selection of variant transforms.

2.4.1 Rotational symmetry modified wavelet transform

For some applications, one may prefer the subband responses to be more rotationally similar.

In the original 2-D DTCWT, the 45 and 135 degree subbands have passbands whose centre frequencies are somewhat
further from the origin than those of the other four subbands. This results from the combination of two highpass 1-D
wavelet filters to produce 2-D wavelets. The remaining subbands combine highpass and lowpass 1-D filters, and hence
their centre frequencies are a factor of approximately sqrt(1.8) closer to the origin of the frequency plane.

The dtwavexfm2b() function employs an alternative bandpass 1-D filter in place of the highpass filter for the appropri-
ate subbands. The image below illustrates the relevant differences in impulse and frequency responses[1].

Usage is very similar to the standard 2-D transform function, but one uses the ‘near_sym_b_bp’ and ‘qshift_b_bp’
wavelets.

import dtcwt
transform = dtcwt.Transform2d(biort=’near_sym_bp’, qshift=’qshift_bp’)

# .. load image and select number of levels ...

image_t = transform.foward(image, nlevels=nlevels)

While the Hilbert transform property of the DTCWT is preserved, perfect reconstruction is lost. However, in applica-
tions such as machine vision, where all subsequent operations on the image take place in the transform domain, this is
of relatively minor importance.

For full details, refer to:

[1] N. G. Kingsbury. Rotation-invariant local feature matching with complex wavelets. In Proc. European Conference
on Signal Processing (EUSIPCO), pages 901–904, 2006. 2, 18, 21

Example

Working on the Lena image, the standard 2-D DTCWT achieves perfect reconstruction:

import dtcwt

# Use the standard 2-D DTCWT
transform = dtcwt.Transform2d(biort=’near_sym_b’, qshift=’qshift_b’)

# Forward transform
image = datasets.lena()
image_t = transform.forward(image)

# Inverse transform
Z = transform.inverse(image_t)

# Show the error
imshow(Z-image, cmap=cm.gray)
colorbar()

14 Chapter 2. Performing the DTCWT
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The error signal appears to be just noise, which we can attribute to floating-point precision.

Using the modified wavelets yields the following result:

import dtcwt

# Use the modified 2-D DTCWT
transform = dtcwt.Transform2d(biort=’near_sym_b_bp’, qshift=’qshift_b_bp’)

# Forward transform
image = datasets.lena()
image_t = transform.forward(image)

# Inverse transform
Z = transform.inverse(image_t)

# Show the error
imshow(Z-image, cmap=cm.gray)
colorbar()

16 Chapter 2. Performing the DTCWT
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As we would expect, the error is more significant, but only near 45 and 135 degree edge features.

2.4. Variant transforms 17
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CHAPTER 3

Multiple Backend Support

The dtcwt library currently provides two backends for computing the wavelet transform: a NumPy based implemen-
tation and an OpenCL implementation which uses the PyOpenCL bindings for Python.

3.1 NumPy

The NumPy backend is the reference implementation of the transform. All algorithms and transforms will have a
NumPy backend. NumPy implementations are written to be efficient but also clear in their operation.

3.2 OpenCL

Some transforms and algorithms implement an OpenCL backend. This backend, if present, will provide an identical
API to the NumPy backend. NumPy-based input may be passed in and out of the backends but if OpenCL-based
input is passed in, a copy back to the host may be avoided in some cases. Not all transforms or algorithms have an
OpenCL-based implementation and the implementation itself may not be full-featured.

OpenCL support depends on the PyOpenCL package being installed and an OpenCL implementation being installed
on your machine. Attempting to use an OpenCL backen without both of these being present will result in a runtime
(but not import-time) exception.

3.3 Which backend should I use?

The top-level transform routines, such as :py:class‘dtcwt.Transform2d‘, will automatically use the NumPy backend.
If you are not primarily focussed on speed, this is the correct choice since the NumPy backend has the fullest feature
support, is the best tested and behaves correctly given single- and double-precision input.

If you care about speed and need only single-precision calculations, the OpenCL backend can provide significant
speed-up. On the author’s system, the 2D transform sees around a times 10 speed improvement.

3.4 Using a backend

The NumPy and OpenCL backends live in the dtcwt.numpy and dtcwt.opencl modules respectively. Both
provide implementations of some subset of the DTCWT library functionality.

19
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Access to the 2D transform is via a dtcwt.Transform2d instance. For example, to compute the 2D DT-CWT of
the 2D real array in X:

>>> from dtcwt.numpy import Transform2d
>>> trans = Transform2d() # You may optionally specify which wavelets to use here
>>> Y = trans.forward(X, nlevels=4) # Perform a 4-level transform of X
>>> imshow(Y.lowpass) # Show coarsest scale low-pass image
>>> imshow(Y.highpasses[-1][:,:,0]) # Show first coarsest scale subband

In this case Y is an instance of a class which behaves like dtcwt.Pyramid. Backends are free to return whatever
result they like as long as the result can be used like this base class. (For example, the OpenCL backend returns a
dtcwt.opencl.Pyramid instance which keeps the device-side results available.)

The default backend used by dtcwt.Transform2d, etc can be manipulated using the
dtcwt.push_backend() function. For example, to switch to the OpenCL backend

dtcwt.push_backend(’opencl’)
# ... Transform2d, etc now use OpenCL ...

As is suggested by the name, changing the backend manipulates a stack behind the scenes and so one can temporarily
switch backend using dtcwt.push_backend() and dtcwt.pop_backend()

# Run benchmark with NumPy
my_benchmarking_function()

# Run benchmark with OpenCL
dtcwt.push_backend(’opencl’)
my_benchmarking_function()
dtcwt.pop_backend()

It is safer to use the dtcwt.preserve_backend_stack() function. This returns a guard object which can be
used with the with statement to save the state of the backend stack

with dtcwt.preserve_backend_stack():
dtcwt.push_backend(’opencl’)
my_benchmarking_function()

# Outside of the ’with’ clause the backend is reset to numpy.

Finally the default backend may be set via the DTCWT_BACKEND environment variable. This is useful to run scripts
with different backends without having to modify their source.

20 Chapter 3. Multiple Backend Support



CHAPTER 4

DTCWT-based algorithms

4.1 Image Registration

The dtcwt.registration module provides an implementation of a DTCWT-based image registration algorithm.
The output is similar, but not identical, to “optical flow”. The underlying assumption is that the source image is
a smooth locally-affine warping of a reference image. This assumption is valid in some classes of medical image
registration and for video sequences with small motion between frames.

4.1.1 Algorithm overview

This section provides a brief overview of the algorithm itself. The algorithm is a 2D version of the 3D registration
algorithm presented in Efficient Registration of Nonrigid 3-D Bodies. The motion field between two images is a vector
field whose elements represent the direction and distance of displacement for each pixel in the source image required
to map it to a corresponding pixel in the reference image. In this algorithm the motion is described via the affine
transform which can represent rotation, translation, shearing and scaling. An advantage of this model is that if the
motion of two neighbouring pixels are from the same model then they will share affine transform parameters. This
allows for large regions of the image to be considered as a whole and helps mitigate the aperture problem.

The model described below is based on the model in Phase-based multidimensional volume registration with changes
designed to allow use of the DTCWT as a front end.

Motion constraint

The three-element homogeneous displacement vector at location x is defined to be

ṽ(x) ≡
[︂
v(x)
1

]︂
where v(x) is the motion vector at location x = [𝑥 𝑦]𝑇 . A motion constraint is a three-element vector, c(x) such that

c𝑇 (x) ṽ(x) = 0.

In the two-dimensional DTCWT, the phase of each complex highpass coefficient has an approximately linear relation-
ship with the local shift vector. We can therefore write

𝜕𝜃𝑑
𝜕𝑡

= ∇x𝜃𝑑 · v(x)

where ∇x𝜃𝑑 ≡ [(𝜕𝜃𝑑/𝜕𝑥) (𝜕𝜃𝑑/𝜕𝑦)]
𝑇 and represents the phase gradient at x for subband 𝑑 in both of the 𝑥 and 𝑦

directions.
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Numerical estimation of the partial derivatives of 𝜃𝑑 can be performed by noting that multiplication of a subband
pixels’s complex coefficient by the conjugate of its neighbour subtracts phase whereas multiplication by the neighbour
adds phase. We can thus construct equivalents of forward-, backward- and central difference algorithms for phase
gradients.

Comparing the relations above, it is clear that the motion constraint vector, c𝑑(x), corresponding to subband 𝑑 at
location x satisfies the following:

c𝑑(x) = 𝐶𝑑(x)

[︂
∇x𝜃𝑑
−𝜕𝜃𝑑

𝜕𝑡

]︂
where 𝐶𝑑(x) is some weighting factor which we can interpret as a measure of the confidence we have of subband 𝑑
specifying the motion at x.

This confidence measure can be heuristically designed. The measure used in this implementation is:

𝐶𝑑(x) =

⃒⃒⃒∑︀4
𝑘=1 𝑢

*
𝑘𝑣𝑘

⃒⃒⃒
∑︀4

𝑘=1(|𝑢𝑘|3 + |𝑣𝑘|3) + 𝜖
.

where 𝑢𝑘 and 𝑣𝑘 are the wavelet coefficients in the reference and source transformed images, subscripts 𝑘 = 1 . . . 4
denote the four diagonally neighbouring coefficients and 𝜖 is some small value to avoid division by zero when the
wavelet coefficients are small. It is beyond the scope of this documentation to describe the design of this metric. Refer
to the original paper for more details.

Cost function

The model is represented via the six parameters 𝑎1 . . . 𝑎6 such that

v(x) =

[︂
1 0 𝑥 0 𝑦 0
0 1 0 𝑥 0 𝑦

]︂⎡⎢⎣𝑎1...
𝑎6

⎤⎥⎦ ≡ K(x)a.

We then make the following definitions:

K̃(x) ≡
[︂
K(x) 0
0 1

]︂
, ã ≡

[︂
a
1

]︂
and then the homogenous motion vector is given by

ṽ(x) = K̃(x) ã.

Considering all size subband directions, we have:

c𝑑(x) K̃(x) ã = 0, ∀ 𝑑 ∈ {1, . . . , 6} .

Each location x has six constraint equations for six unknown affine parameters in ã. We can solve for ã by minimising
squared error 𝜖(x):

𝜖(x) =

6∑︁
𝑑=1

⃦⃦⃦
c𝑇𝑑 (x)K̃(x)ã

⃦⃦⃦2
=

6∑︁
𝑑=1

ã𝑇 K̃𝑇 (x) c𝑑(x)c
𝑇
𝑑 (x) K̃(x) ã

= ã𝑇 Q̃(x)ã

22 Chapter 4. DTCWT-based algorithms
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where

Q̃(x) ≡
6∑︁

𝑑=1

K̃𝑇 (x) c𝑑(x)c
𝑇
𝑑 (x) K̃(x).

In practice, in order to handle the registration of dissimilar image features and also to handle the aperture problem,
it is helpful to combine Q̃(x) matrices across more than one level of DTCWT and over a slightly wider area within
each level. This results in better estimates of the affine parameters and reduces the likelihood of obtaining singular
matrices. We define locality 𝜒 to represent this wider spatial and inter-scale region, such that

Q̃𝜒 =
∑︁
x∈𝜒

Q̃(x).

The Q̃𝜒 matrices are symmetric and so can be written in the following form:

Q̃𝜒 =

[︂
Q𝜒 q𝜒

q𝑇
𝜒 𝑞0,𝜒

]︂
where q𝜒 is a six-element vector and 𝑞0,𝜒 is a scalar. Substituting into our squared error function gives

𝜖𝜒 = a𝑇Q𝜒a+ 2a𝑇q𝜒 + 𝑞0,𝜒.

To minimize, we differentiate and set to zero. Hence,

∇a𝜖𝜒 = 2Q𝜒a+ 2q𝜒 = 0

and so the local affine parameter vector satisfies

Q𝜒a𝜒 = −q𝜒.

In our implementation, we avoid calculating the inverse of Q𝜒 directly and solve this equation by eigenvector decom-
position.

Iteration

There are three stres in the full registration algorithm: transform the images to the DTCWT domain, perform motion
estimation and register the source image. We do this via an iterative process where coarse-scale estimates of a𝜒 are
estimated from coarse-scale levels of the transform and progressively refined with finer-scale levels.

The following flow diagram, taken from the paper, illustrates the algorithm.

4.1. Image Registration 23
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The pair of images to be registered are first transformed by the DTCWT and levels to be used for motion estimation
are selected. The subband coefficients of the source image are shifted according to the current motion field estimate.
These shifted coefficients together with those of the reference image are then used to generate motion constraints.
From these the Q̃𝜒 matrices are calculated and the local affine distortion parameters updated. After a few iterations,
the distortion parameters are used to warp the source image directly.

4.1.2 Using the implementation

The implementation of the image registration algorithm is accessed via the dtcwt.registration mod-
ule’s functions. The two functions of most interest at dtcwt.registration.estimatereg() and
dtcwt.registration.warp(). The former will estimate a𝜒 for each 8x8 block in the image and
dtcwt.registration.warp() will take these affine parameter vectors and warp an image with them.

As an example, we will register two frames from a video of road traffic. Firstly, as boilerplate, import plotting
command from pylab and also the datasets module which is part of the test suite for dtcwt.

24 Chapter 4. DTCWT-based algorithms
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In [1]: from pylab import *

In [2]: import datasets

If we show one image in the red channel and one in the green, we can see where the images are incorrectly registered
by looking for red or green fringes:

In [3]: ref, src = datasets.regframes(’traffic’)

In [4]: figure()
Out[4]: <matplotlib.figure.Figure at 0x59f0110>

In [5]: imshow(np.dstack((ref, src, np.zeros_like(ref))))
Out[5]: <matplotlib.image.AxesImage at 0xa561f10>

In [6]: title(’Registration input images’)
Out[6]: <matplotlib.text.Text at 0x4c06550>

To register the images we first take the DTCWT:

In [7]: import dtcwt

In [8]: transform = dtcwt.Transform2d()

In [9]: ref_t = transform.forward(ref, nlevels=6)

4.1. Image Registration 25
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In [10]: src_t = transform.forward(src, nlevels=6)

Registration is now performed via the dtcwt.registration.estimatereg() function. Once the registration
is estimated, we can warp the source image to the reference using the dtcwt.registration.warp() function.

In [11]: import dtcwt.registration as registration

In [12]: reg = registration.estimatereg(src_t, ref_t)

In [13]: warped_src = registration.warp(src, reg, method=’bilinear’)

Plotting the warped and reference image in the green and red channels again shows a marked reduction in colour
fringes.

In [14]: figure()
Out[14]: <matplotlib.figure.Figure at 0x6248d50>

In [15]: imshow(np.dstack((ref, warped_src, np.zeros_like(ref))))
Out[15]: <matplotlib.image.AxesImage at 0xa567ad0>

In [16]: title(’Source image warped to reference’)
Out[16]: <matplotlib.text.Text at 0x705fe90>

The velocity field, in units of image width/height, can be calculated by the
dtcwt.registration.velocityfield() function. We need to scale the result by the image width
and height to get a velocity field in pixels.
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In [17]: vxs, vys = registration.velocityfield(reg, ref.shape[:2], method=’bilinear’)

In [18]: vxs = vxs * ref.shape[1]

In [19]: vys = vys * ref.shape[0]

We can plot the result as a quiver map overlaid on the reference image:

In [20]: figure()
Out[20]: <matplotlib.figure.Figure at 0xe33e490>

In [21]: X, Y = np.meshgrid(np.arange(ref.shape[1]), np.arange(ref.shape[0]))

In [22]: imshow(ref, cmap=cm.gray, clim=(0,1))
Out[22]: <matplotlib.image.AxesImage at 0xe620410>

In [23]: step = 8

In [24]: quiver(X[::step,::step], Y[::step,::step],
....: vxs[::step,::step], vys[::step,::step],
....: color=’g’, angles=’xy’, scale_units=’xy’, scale=0.25)
....:

Out[24]: <matplotlib.quiver.Quiver at 0x1038ed90>

In [25]: title(’Estimated velocity field (x4 scale)’)
Out[25]: <matplotlib.text.Text at 0xe61c850>
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We can also plot the magnitude of the velocity field which clearly shows the moving cars:

In [26]: figure()
Out[26]: <matplotlib.figure.Figure at 0xe9e6690>

In [27]: imshow(np.abs(vxs + 1j*vys), cmap=cm.hot)
Out[27]: <matplotlib.image.AxesImage at 0x10480b50>

In [28]: title(’Velocity field magnitude’)
Out[28]: <matplotlib.text.Text at 0x10480950>
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CHAPTER 5

Example scripts

5.1 Showing 3D Directional Sensitivity

The 3d_dtcwt_directionality.py script in the docs/ directory shows how one may demonstrate the direc-
tional sensitivity of the 3D DT-CWT complex subband coefficients. It computes empirically the maximally sensitive
directions for each subband and plots them in an interactive figure using matplotlib. A screenshot is reproduced below:
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3D DT-CWT subband directions for +ve hemisphere quadrant

There are some points to note about this diagram. Each subband is labeled sich that ‘1’ refers to the first subband, ‘5’
the fifth and so forth. On this diagram the highpasses are all four apart reflecting the fact that, for example, highpasses
2, 3 and 4 are positioned in the other four quadrants of the upper hemisphere reflecting the position of subband 1.
There are seven visible subband directions in the +ve quadrant of the hemisphere and hence there are 28 directions in
total over all four quadrants.

5.2 2D Image Registration

This library includes support for 2D image registration modelled after the 3D algorithm outlined in the paper Efficient
Registration of Nonrigid 3-D Bodies. The image-registration.py script in the docs/ directory shows a
complete worked example of using the registration API using two sets of source images: a woman playing tennis and
some traffic at a road junction.
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It will attempt to register two image pairs: a challenging sequence from a video sequence and a sequence from a traffic
camera. The result is shown below.
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CHAPTER 6

API Reference

6.1 Main interface

class dtcwt.Transform1d(biort=’near_sym_a’, qshift=’qshift_a’)
An implementation of the 1D DT-CWT in NumPy.

Parameters

• biort – Level 1 wavelets to use. See dtcwt.coeffs.biort().

• qshift – Level >= 2 wavelets to use. See dtcwt.coeffs.qshift().

forward(X, nlevels=3, include_scale=False)
Perform a n-level DTCWT decompostion on a 1D column vector X (or on the columns of a matrix X).

Parameters

• X – 1D real array or 2D real array whose columns are to be transformed

• nlevels – Number of levels of wavelet decomposition

Returns A dtcwt.Pyramid-like object representing the transform result.

If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions.
Otherwise, they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should
be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

inverse(pyramid, gain_mask=None)
Perform an n-level dual-tree complex wavelet (DTCWT) 1D reconstruction.

Parameters

• pyramid – A dtcwt.Pyramid-like object containing the transformed signal.

• gain_mask – Gain to be applied to each subband.

Returns Reconstructed real array.

The l-th element of gain_mask is gain for wavelet subband at level l. If gain_mask[l] == 0, no computation
is performed for band l. Default gain_mask is all ones. Note that l is 0-indexed.

class dtcwt.Transform2d(biort=’near_sym_a’, qshift=’qshift_a’)
An implementation of the 2D DT-CWT via NumPy. biort and qshift are the wavelets which parameterise the
transform.

If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coef-
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ficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a,
g0b, h1a, h1b, g1a, g1b).

forward(X, nlevels=3, include_scale=False)
Perform a n-level DTCWT-2D decompostion on a 2D matrix X.

Parameters

• X – 2D real array

• nlevels – Number of levels of wavelet decomposition

Returns A dtcwt.Pyramid compatible object representing the transform-domain signal

inverse(pyramid, gain_mask=None)
Perform an n-level dual-tree complex wavelet (DTCWT) 2D reconstruction.

Parameters

• pyramid – A dtcwt.Pyramid-like class holding the transform domain representation
to invert.

• gain_mask – Gain to be applied to each subband.

Returns A numpy-array compatible instance with the reconstruction.

The (d, l)-th element of gain_mask is gain for subband with direction d at level l. If gain_mask[d,l] ==
0, no computation is performed for band (d,l). Default gain_mask is all ones. Note that both d and l are
zero-indexed.

class dtcwt.Transform3d(biort=’near_sym_a’, qshift=’qshift_a’, ext_mode=4)
An implementation of the 3D DT-CWT via NumPy. biort and qshift are the wavelets which parameterise the
transform. Valid values are documented in dtcwt.coeffs.biort() and dtcwt.coeffs.qshift().

forward(X, nlevels=3, include_scale=False, discard_level_1=False)
Perform a n-level DTCWT-3D decompostion on a 3D matrix X.

Parameters

• X – 3D real array-like object

• nlevels – Number of levels of wavelet decomposition

• biort – Level 1 wavelets to use. See dtcwt.coeffs.biort().

• qshift – Level >= 2 wavelets to use. See dtcwt.coeffs.qshift().

• discard_level_1 – True if level 1 high-pass bands are to be discarded.

Returns a dtcwt.Pyramid instance

Each element of the Pyramid highpasses tuple is a 4D complex array with the 4th dimension having size
28. The 3D slice [l][:,:,:,d] corresponds to the complex higpass coefficients for direction d at level
l where d and l are both 0-indexed.

If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter
coefficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a,
h0b, g0a, g0b, h1a, h1b, g1a, g1b).

There are two values for ext_mode, either 4 or 8. If ext_mode = 4, check whether 1st level is divisible by
2 (if not we raise a ValueError). Also check whether from 2nd level onwards, the coefs can be divided
by 4. If any dimension size is not a multiple of 4, append extra coefs by repeating the edges. If ext_mode
= 8, check whether 1st level is divisible by 4 (if not we raise a ValueError). Also check whether from
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2nd level onwards, the coeffs can be divided by 8. If any dimension size is not a multiple of 8, append
extra coeffs by repeating the edges twice.

If discard_level_1 is True the highpass coefficients at level 1 will not be discarded. (And, in fact, will never
be calculated.) This turns the transform from being 8:1 redundant to being 1:1 redundant at the cost of
no-longer allowing perfect reconstruction. If this option is selected then the first element of the highpasses
tuple will be None. Note that dtcwt.Transform3d.inverse() will accept the first element being
None and will treat it as being zero.

inverse(pyramid)
Perform an n-level dual-tree complex wavelet (DTCWT) 3D reconstruction.

Parameters

• pyramid – The dtcwt.Pyramid-like instance representing the transformed signal.

• biort – Level 1 wavelets to use. See biort().

• qshift – Level >= 2 wavelets to use. See qshift().

• ext_mode – Extension mode. See below.

Returns Reconstructed real image matrix.

If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter
coefficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a,
h0b, g0a, g0b, h1a, h1b, g1a, g1b).

There are two values for ext_mode, either 4 or 8. If ext_mode = 4, check whether 1st level is divisible by
2 (if not we raise a ValueError). Also check whether from 2nd level onwards, the coefs can be divided
by 4. If any dimension size is not a multiple of 4, append extra coefs by repeating the edges. If ext_mode
= 8, check whether 1st level is divisible by 4 (if not we raise a ValueError). Also check whether from
2nd level onwards, the coeffs can be divided by 8. If any dimension size is not a multiple of 8, append
extra coeffs by repeating the edges twice.

class dtcwt.Pyramid(lowpass, highpasses, scales=None)
A representation of a transform domain signal.

Backends are free to implement any class which respects this interface for storing transform-domain signals.
The inverse transform may accept a backend-specific version of this class but should always accept any class
which corresponds to this interface.

lowpass
A NumPy-compatible array containing the coarsest scale lowpass signal.

highpasses
A tuple where each element is the complex subband coefficients for corresponding scales finest to coarsest.

scales
(optional) A tuple where each element is a NumPy-compatible array containing the lowpass signal for
corresponding scales finest to coarsest. This is not required for the inverse and may be None.

dtcwt.backend_name = ‘numpy’
A string providing a short human-readable name for the DTCWT backend currently being used. This corre-
sponds to the name parameter passed to dtcwt.push_backend(). The default backend is numpy but can
be overridden by setting the DTCWT_BACKEND environment variable to a valid backend name.

dtcwt.push_backend(name)
Switch backend implementation to name. Push the previous backend onto the backend stack. The previous
backend may be restored via dtcwt.pop_backend().

Parameters name – string identifying which backend to switch to
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Raises ValueError if name does not correspond to a known backend

name may take one of the following values:

•numpy: the default NumPy backend. See dtcwt.numpy.

•opencl: a backend which uses OpenCL where available. See dtcwt.opencl.

dtcwt.pop_backend()
Restore the backend after a call to push_backend(). Calls to pop_backend() and pop_backend()
may be nested. This function will undo the most recent call to push_backend().

Raises IndexError if one attempts to pop more backends than one has pushed.

dtcwt.preserve_backend_stack()
Return a generator object which can be used to preserve the backend stack even when an exception has been
raise. For example:

# current backend is NumPy
assert dtcwt.backend_name == ’numpy’

with dtcwt.preserve_backend_stack():
dtcwt.push_backend(’opencl’)
# ... things which may raise an exception

# current backend is NumPy even if an exception was thrown
assert dtcwt.backend_name == ’numpy’

Functions to load standard wavelet coefficients.

dtcwt.coeffs.biort(name)
Load level 1 wavelet by name.

Parameters name – a string specifying the wavelet family name

Returns a tuple of vectors giving filter coefficients

Name Wavelet
antonini Antonini 9,7 tap filters.
legall LeGall 5,3 tap filters.
near_sym_a Near-Symmetric 5,7 tap filters.
near_sym_b Near-Symmetric 13,19 tap filters.
near_sym_b_bp Near-Symmetric 13,19 tap filters + BP filter

Return a tuple whose elements are a vector specifying the h0o, g0o, h1o and g1o coefficients.

See Rotational symmetry modified wavelet transform for an explanation of the near_sym_b_bp wavelet fil-
ters.

Raises

• IOError – if name does not correspond to a set of wavelets known to the library.

• ValueError – if name specifies a dtcwt.coeffs.qshift() wavelet.

dtcwt.coeffs.qshift(name)
Load level >=2 wavelet by name,

Parameters name – a string specifying the wavelet family name

Returns a tuple of vectors giving filter coefficients
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Name Wavelet
qshift_06 Quarter Sample Shift Orthogonal (Q-Shift) 10,10 tap filters, (only 6,6 non-zero taps).
qshift_a Q-shift 10,10 tap filters, (with 10,10 non-zero taps, unlike qshift_06).
qshift_b Q-Shift 14,14 tap filters.
qshift_c Q-Shift 16,16 tap filters.
qshift_d Q-Shift 18,18 tap filters.
qshift_b_bp Q-Shift 18,18 tap filters + BP

Return a tuple whose elements are a vector specifying the h0a, h0b, g0a, g0b, h1a, h1b, g1a and g1b coefficients.

See Rotational symmetry modified wavelet transform for an explanation of the qshift_b_bp wavelet filters.

Raises

• IOError – if name does not correspond to a set of wavelets known to the library.

• ValueError – if name specifies a dtcwt.coeffs.biort() wavelet.

6.2 Keypoint analysis

dtcwt.keypoint.find_keypoints(highpass_highpasses, method=None, alpha=1.0,
beta=0.4, kappa=0.16666666666666666, threshold=None,
max_points=None, upsample_keypoint_energy=None, upsam-
ple_highpasses=None, refine_positions=True, skip_levels=1)

Parameters

• highpass_highpasses – (NxMx6) matrix of highpass subband images

• method – (optional) string specifying which keypoint energy method to use

• alpha – (optional) scale parameter for ’fauqueur’ method

• beta – (optional) shape parameter for ’fauqueur’ method

• kappa – (optiona) suppression parameter for ’kingsbury’ method

• threshold – (optional) minimum keypoint energy of returned keypoints

• max_points – (optional) maximum number of keypoints to return

• upsample_keypoint_energy – is non-None, a string specifying a method used to upscale
the keypoint energy map before finding keypoints

• upsample_subands – is non-None, a string specifying a method used to upscale the sub-
band image before finding keypoints

• refine_positions – (optional) should the keypoint positions be refined to sub-pixel accuracy

• skip_levels – (optional) number of levels of the transform to ignore before looking for
keypoints

Returns (Px4) array of P keypoints in image co-ordinates

Warning: The interface and behaviour of this function is the subject of an open research project. It
is provided in this release as a preview of forthcoming functionality but it is subject to change between
releases.

The rows of the returned keypoint array give the x co-ordinate, y co-ordinate, scale and keypoint energy. The
rows are sorted in order of decreasing keypoint energy.
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If refine_positions is True then the positions (and energy) of the keypoints will be refined to sub-pixel accuracy
by fitting a quadratic patch. If refine_positions is False then the keypoint locations will be those corresponding
directly to pixel-wise maxima of the subband images.

The max_points and threshold parameters are cumulative: if both are specified then the max_points greatest
energy keypoints with energy greater than threshold will be returned.

Usually the keypoint energies returned from the finest scale level are dominated by noise and so one usually
wants to specify skip_levels to be 1 or 2. If skip_levels is 0 then all levels will be used to compute keypoint
energy.

The upsample_highpasses and upsample_keypoint_energy parameters are used to control whether the individual
subband coefficients and/org the keypoint energy map are upscaled by 2 before finding keypoints. If these
parameters are None then no corresponding upscaling is performed. If non-None they specify the upscale
method as outlined in dtcwt.sampling.upsample().

If method is None, the default ’fauqueur’ method is used.

Name Description Parameters used
fauqueur Geometric mean of absolute values[1] alpha, beta
bendale Minimum absolute value[2] none
kingsbury Cross-product of orthogonal highpasses kappa

[1] Julien Fauqueur, Nick Kingsbury, and Ryan Anderson. Multiscale Keypoint Detection us-
ing the Dual-Tree Complex Wavelet Transform. 2006 International Conference on Image Pro-
cessing, pages 1625-1628, October 2006. ISSN 1522-4880. doi: 10.1109/ICIP.2006.312656.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4106857.

[2] Pashmina Bendale, Bill Triggs, and Nick Kingsbury. Multiscale Keypoint Analysis based
on Complex Wavelets. In British Machine Vision Con-ference (BMVC), 2010. http://www-
sigproc.eng.cam.ac.uk/~pb397/publications/BTK_BMVC_2010_abstract.pdf.

6.3 Image sampling

This module contains function for rescaling and re-sampling high- and low-pass highpasses.

Note: All of these functions take an integer co-ordinate (x, y) to be the centre of the corresponding pixel. Therefore
the upper-left pixel notionally covers the interval (-0.5, 0.5) in x and y. An image with N rows and M columns,
therefore, has an extent (-0.5, M-0.5) on the x-axis and an extent of (-0.5, N-0.5) on the y-axis. The rescale and
upsample functions in this module will use this region as the extent of the image.

dtcwt.sampling.sample(im, xs, ys, method=None)
Sample image at (x,y) given by elements of xs and ys. Both xs and ys must have identical shape and output will
have this same shape. The location (x,y) refers to the centre of im[y,x]. Samples at fractional locations are
calculated using the method specified by method (or ’lanczos’ if method is None.)

Parameters

• im – array to sample from

• xs – x co-ordinates to sample

• ys – y co-ordinates to sample

• method – one of ‘bilinear’, ‘lanczos’ or ‘nearest’

Raises ValueError if xs and ys have differing shapes
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dtcwt.sampling.sample_highpass(im, xs, ys, method=None)
As sample() except that the highpass image is first phase shifted to be centred on approximately DC.

dtcwt.sampling.rescale(im, shape, method=None)
Return a resampled version of im scaled to shape.

Since the centre of pixel (x,y) has co-ordinate (x,y) the extent of im is actually 𝑥 ∈ (−0.5, 𝑤 − 0.5] and
𝑦 ∈ (−0.5, ℎ− 0.5] where (y,x) is im.shape. This returns a sampled version of im that has the same extent as
a shape-sized array.

dtcwt.sampling.rescale_highpass(im, shape, method=None)
As rescale() except that the highpass image is first phase shifted to be centred on approximately DC.

dtcwt.sampling.upsample(image, method=None)
Specialised function to upsample an image by a factor of two using a specified sampling method. If image is an
array of shape (NxMx...) then the output will have shape (2Nx2Mx...). Only rows and columns are upsampled,
depth axes and greater are interpolated but are not upsampled.

Parameters

• image – an array containing the image to upsample

• method – if non-None, a string specifying the sampling method to use.

If method is None, the default sampling method ’lanczos’ is used. The following sampling methods are
supported:

Name Description
nearest Nearest-neighbour sampling
bilinear Bilinear sampling
lanczos Lanczos sampling with window radius of 3

dtcwt.sampling.upsample_highpass(im, method=None)
As upsample() except that the highpass image is first phase rolled so that the filter has approximate DC
centre frequency. The upshot is that this is the function to use when re-sampling complex subband images.

6.4 Image registration

Note: This module is experimental. It’s API may change between versions.

This module implements function for DTCWT-based image registration as outlined in [1]. These functions are 2D-
only for the moment.

dtcwt.registration.estimatereg(source, reference, regshape=None)
Estimate registration from which will map source to reference.

Parameters

• source – transformed source image

• reference – transformed reference image

The reference and source parameters should support the same API as dtcwt.Pyramid.

The local affine distortion is estimated at at 8x8 pixel scales. Return a NxMx6 array where the 6-element vector
at (N,M) corresponds to the affine distortion parameters for the 8x8 block with index (N,M).

Use the velocityfield() function to convert the return value from this function into a velocity field.
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dtcwt.registration.velocityfield(avecs, shape, method=None)
Given the affine distortion parameters returned from estimatereg(), return a tuple of 2D arrays giving the
x- and y- components of the velocity field. The shape of the velocity component field is shape. The velocities
are measured in terms of normalised units where the image has width and height of unity.

The method parameter is interpreted as in dtcwt.sampling.rescale() and is the sampling method used
to resize avecs to shape.

dtcwt.registration.warp(I, avecs, method=None)
A convenience function to warp an image according to the velocity field implied by avecs.

dtcwt.registration.warptransform(t, avecs, levels, method=None)
Return a warped version of a transformed image acting only on specified levels.

Parameters

• t – a transformed image

• avecs – an array of affine distortion parameters

• levels – a sequence of 0-based indices specifying which levels to act on

t should be a dtcwt.Pyramid-compatible instance.

The method parameter is interpreted as in dtcwt.sampling.rescale() and is the sampling method used
to resize avecs to shape.

Note: This function will clone the transform t but it is a shallow clone where possible. Only the levels specified
in levels will be deep-copied and warped.

6.5 Plotting functions

Convenience functions for plotting DTCWT-related objects.

dtcwt.plotting.overlay_quiver_DTCWT(image, vectorField, level, offset)
Overlays nicely coloured quiver plot of complex coefficients over original full-size image, providing a useful
phase visualisation.

Parameters

• image – array holding grayscale values on the interval [0, 255] to display

• vectorField – a single [MxNx6] numpy array of DTCWT coefficients

• level – the transform level (1-indexed) of vectorField.

• offset – Offset for DTCWT coefficients (typically 0.5)

Note: The level parameter is 1-indexed meaning that the third level has index “3”. This is unusual in Python
but is kept for compatibility with similar MATLAB routines.

Should also work with other types of complex arrays (e.g., SLP coefficients), as long as the format is the same.

Usage example:

import dtcwt
import dtcwt.plotting as plotting

lena = datasets.lena()
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transform2d = dtcwt.Transform2d()
lena_t = transform2d.forward(lena, nlevels=5)

plotting.overlay_quiver_DTCWT(lena*255, lena_t.highpasses[-1], 5, 0.5)
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6.6 Miscellaneous and low-level support functions

Useful utilities for testing the 2-D DTCWT with synthetic images

dtcwt.utils.appropriate_complex_type_for(X)
Return an appropriate complex data type depending on the type of X. If X is already complex, return that, if it is
floating point return a complex type of the appropriate size and if it is integer, choose an complex floating point
type depending on the result of numpy.asfarray().

dtcwt.utils.as_column_vector(v)
Return v as a column vector with shape (N,1).

dtcwt.utils.asfarray(X)
Similar to numpy.asfarray() except that this function tries to preserve the original datatype of X if it is
already a floating point type and will pass floating point arrays through directly without copying.

dtcwt.utils.drawcirc(r, w, du, dv, N)
Generate an image of size N*N pels, containing a circle radius r pels and centred at du,dv relative to the centre
of the image. The edge of the circle is a cosine shaped edge of width w (from 10 to 90% points).

Python implementation by S. C. Forshaw, November 2013.
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dtcwt.utils.drawedge(theta, r, w, N)
Generate an image of size N * N pels, of an edge going from 0 to 1 in height at theta degrees to the horizontal
(top of image = 1 if angle = 0). r is a two-element vector, it is a coordinate in ij coords through which the step
should pass. The shape of the intensity step is half a raised cosine w pels wide (w>=1).

T. E . Gale’s enhancement to drawedge() for MATLAB, transliterated to Python by S. C. Forshaw, Nov. 2013.

dtcwt.utils.reflect(x, minx, maxx)
Reflect the values in matrix x about the scalar values minx and maxx. Hence a vector x containing a long linearly
increasing series is converted into a waveform which ramps linearly up and down between minx and maxx. If x
contains integers and minx and maxx are (integers + 0.5), the ramps will have repeated max and min samples.

dtcwt.utils.stacked_2d_matrix_matrix_prod(mats1, mats2)
Interpret mats1 and mats2 as arrays of 2D matrices. I.e. mats1 has shape PxQxNxM and mats2 has shape
PxQxMxR. The result is a PxQxNxR array equivalent to:

result[i,j,:,:] = mats1[i,j,:,:].dot(mats2[i,j,:,:])

for all valid row and column indices i and j.

dtcwt.utils.stacked_2d_matrix_vector_prod(mats, vecs)
Interpret mats and vecs as arrays of 2D matrices and vectors. I.e. mats has shape PxQxNxM and vecs has shape
PxQxM. The result is a PxQxN array equivalent to:

result[i,j,:] = mats[i,j,:,:].dot(vecs[i,j,:])

for all valid row and column indices i and j.

dtcwt.utils.stacked_2d_vector_matrix_prod(vecs, mats)
Interpret mats and vecs as arrays of 2D matrices and vectors. I.e. mats has shape PxQxNxM and vecs has shape
PxQxN. The result is a PxQxM array equivalent to:

result[i,j,:] = mats[i,j,:,:].T.dot(vecs[i,j,:])

for all valid row and column indices i and j.

6.7 Compatibility with MATLAB

Functions for compatibility with MATLAB scripts. These functions are intentionally similar in name and behaviour
to the original functions from the DTCWT MATLAB toolbox. They are included in the library to ease the porting of
MATLAB scripts but shouldn’t be used in new projects.

Note: The functionality of dtwavexfm2b and dtwaveifm2b has been folded into dtwavexfm2 and
dtwaveifm2. For convenience of porting MATLAB scripts, the original function names are available in the dtcwt
module as aliases but they should not be used in new code.

dtcwt.compat.dtwavexfm(X, nlevels=3, biort=’near_sym_a’, qshift=’qshift_a’, include_scale=False)
Perform a n-level DTCWT decompostion on a 1D column vector X (or on the columns of a matrix X).

Parameters

• X – 1D real array or 2D real array whose columns are to be transformed

• nlevels – Number of levels of wavelet decomposition

• biort – Level 1 wavelets to use. See dtcwt.coeffs.biort().

• qshift – Level >= 2 wavelets to use. See dtcwt.coeffs.qshift().
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Returns Yl The real lowpass image from the final level

Returns Yh A tuple containing the (N, M, 6) shape complex highpass subimages for each level.

Returns Yscale If include_scale is True, a tuple containing real lowpass coefficients for every scale.

If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coef-
ficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a,
g0b, h1a, h1b, g1a, g1b).

Example:

# Performs a 5-level transform on the real image X using the 13,19-tap
# filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm(X,5,’near_sym_b’,’qshift_b’)

dtcwt.compat.dtwaveifm(Yl, Yh, biort=’near_sym_a’, qshift=’qshift_a’, gain_mask=None)
Perform an n-level dual-tree complex wavelet (DTCWT) 1D reconstruction.

Parameters

• Yl – The real lowpass subband from the final level

• Yh – A sequence containing the complex highpass subband for each level.

• biort – Level 1 wavelets to use. See dtcwt.coeffs.biort().

• qshift – Level >= 2 wavelets to use. See dtcwt.coeffs.qshift().

• gain_mask – Gain to be applied to each subband.

Returns Z Reconstructed real array.

The l-th element of gain_mask is gain for wavelet subband at level l. If gain_mask[l] == 0, no computation is
performed for band l. Default gain_mask is all ones. Note that l is 0-indexed.

If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coef-
ficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a,
g0b, h1a, h1b, g1a, g1b).

Example:

# Performs a reconstruction from Yl,Yh using the 13,19-tap filters
# for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm(Yl, Yh, ’near_sym_b’, ’qshift_b’)

dtcwt.compat.dtwavexfm2(X, nlevels=3, biort=’near_sym_a’, qshift=’qshift_a’, in-
clude_scale=False)

Perform a n-level DTCWT-2D decompostion on a 2D matrix X.

Parameters

• X – 2D real array

• nlevels – Number of levels of wavelet decomposition

• biort – Level 1 wavelets to use. See dtcwt.coeffs.biort().

• qshift – Level >= 2 wavelets to use. See dtcwt.coeffs.qshift().

Returns Yl The real lowpass image from the final level

Returns Yh A tuple containing the complex highpass subimages for each level.

Returns Yscale If include_scale is True, a tuple containing real lowpass coefficients for every scale.
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If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coef-
ficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a,
g0b, h1a, h1b, g1a, g1b).

Example:

# Performs a 3-level transform on the real image X using the 13,19-tap
# filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm2(X, 3, ’near_sym_b’, ’qshift_b’)

dtcwt.compat.dtwaveifm2(Yl, Yh, biort=’near_sym_a’, qshift=’qshift_a’, gain_mask=None)
Perform an n-level dual-tree complex wavelet (DTCWT) 2D reconstruction.

Parameters

• Yl – The real lowpass subband from the final level

• Yh – A sequence containing the complex highpass subband for each level.

• biort – Level 1 wavelets to use. See dtcwt.coeffs.biort().

• qshift – Level >= 2 wavelets to use. See dtcwt.coeffs.qshift().

• gain_mask – Gain to be applied to each subband.

Returns Z Reconstructed real array

The (d, l)-th element of gain_mask is gain for subband with direction d at level l. If gain_mask[d,l] == 0, no
computation is performed for band (d,l). Default gain_mask is all ones. Note that both d and l are zero-indexed.

If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coef-
ficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a,
g0b, h1a, h1b, g1a, g1b).

Example:

# Performs a 3-level reconstruction from Yl,Yh using the 13,19-tap
# filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm2(Yl, Yh, ’near_sym_b’, ’qshift_b’)

dtcwt.compat.dtwavexfm2b(X, nlevels=3, biort=’near_sym_a’, qshift=’qshift_a’, in-
clude_scale=False)

Perform a n-level DTCWT-2D decompostion on a 2D matrix X.

Parameters

• X – 2D real array

• nlevels – Number of levels of wavelet decomposition

• biort – Level 1 wavelets to use. See dtcwt.coeffs.biort().

• qshift – Level >= 2 wavelets to use. See dtcwt.coeffs.qshift().

Returns Yl The real lowpass image from the final level

Returns Yh A tuple containing the complex highpass subimages for each level.

Returns Yscale If include_scale is True, a tuple containing real lowpass coefficients for every scale.

If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coef-
ficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a,
g0b, h1a, h1b, g1a, g1b).
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Example:

# Performs a 3-level transform on the real image X using the 13,19-tap
# filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm2(X, 3, ’near_sym_b’, ’qshift_b’)

dtcwt.compat.dtwaveifm2b(Yl, Yh, biort=’near_sym_a’, qshift=’qshift_a’, gain_mask=None)
Perform an n-level dual-tree complex wavelet (DTCWT) 2D reconstruction.

Parameters

• Yl – The real lowpass subband from the final level

• Yh – A sequence containing the complex highpass subband for each level.

• biort – Level 1 wavelets to use. See dtcwt.coeffs.biort().

• qshift – Level >= 2 wavelets to use. See dtcwt.coeffs.qshift().

• gain_mask – Gain to be applied to each subband.

Returns Z Reconstructed real array

The (d, l)-th element of gain_mask is gain for subband with direction d at level l. If gain_mask[d,l] == 0, no
computation is performed for band (d,l). Default gain_mask is all ones. Note that both d and l are zero-indexed.

If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coef-
ficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a,
g0b, h1a, h1b, g1a, g1b).

Example:

# Performs a 3-level reconstruction from Yl,Yh using the 13,19-tap
# filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm2(Yl, Yh, ’near_sym_b’, ’qshift_b’)

dtcwt.compat.dtwavexfm3(X, nlevels=3, biort=’near_sym_a’, qshift=’qshift_a’, include_scale=False,
ext_mode=4, discard_level_1=False)

Perform a n-level DTCWT-3D decompostion on a 3D matrix X.

Parameters

• X – 3D real array-like object

• nlevels – Number of levels of wavelet decomposition

• biort – Level 1 wavelets to use. See dtcwt.coeffs.biort().

• qshift – Level >= 2 wavelets to use. See dtcwt.coeffs.qshift().

• ext_mode – Extension mode. See below.

• discard_level_1 – True if level 1 high-pass bands are to be discarded.

Returns Yl The real lowpass image from the final level

Returns Yh A tuple containing the complex highpass subimages for each level.

Each element of Yh is a 4D complex array with the 4th dimension having size 28. The 3D slice
Yh[l][:,:,:,d] corresponds to the complex higpass coefficients for direction d at level l where d and l
are both 0-indexed.

If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coef-

6.7. Compatibility with MATLAB 45



dtcwt Documentation, Release 0.9.0

ficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a,
g0b, h1a, h1b, g1a, g1b).

There are two values for ext_mode, either 4 or 8. If ext_mode = 4, check whether 1st level is divisible by 2 (if not
we raise a ValueError). Also check whether from 2nd level onwards, the coefs can be divided by 4. If any
dimension size is not a multiple of 4, append extra coefs by repeating the edges. If ext_mode = 8, check whether
1st level is divisible by 4 (if not we raise a ValueError). Also check whether from 2nd level onwards, the
coeffs can be divided by 8. If any dimension size is not a multiple of 8, append extra coeffs by repeating the
edges twice.

If discard_level_1 is True the highpass coefficients at level 1 will be discarded. (And, in fact, will never be
calculated.) This turns the transform from being 8:1 redundant to being 1:1 redundant at the cost of no-longer
allowing perfect reconstruction. If this option is selected then Yh[0] will be None. Note that dtwaveifm3()
will accepts Yh[0] being None and will treat it as being zero.

Example:

# Performs a 3-level transform on the real 3D array X using the 13,19-tap
# filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm3(X, 3, ’near_sym_b’, ’qshift_b’)

dtcwt.compat.dtwaveifm3(Yl, Yh, biort=’near_sym_a’, qshift=’qshift_a’, ext_mode=4)
Perform an n-level dual-tree complex wavelet (DTCWT) 3D reconstruction.

Parameters

• Yl – The real lowpass subband from the final level

• Yh – A sequence containing the complex highpass subband for each level.

• biort – Level 1 wavelets to use. See dtcwt.coeffs.biort().

• qshift – Level >= 2 wavelets to use. See dtcwt.coeffs.qshift().

• ext_mode – Extension mode. See below.

Returns Z Reconstructed real image matrix.

If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coef-
ficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a,
g0b, h1a, h1b, g1a, g1b).

There are two values for ext_mode, either 4 or 8. If ext_mode = 4, check whether 1st level is divisible by 2 (if not
we raise a ValueError). Also check whether from 2nd level onwards, the coefs can be divided by 4. If any
dimension size is not a multiple of 4, append extra coefs by repeating the edges. If ext_mode = 8, check whether
1st level is divisible by 4 (if not we raise a ValueError). Also check whether from 2nd level onwards, the
coeffs can be divided by 8. If any dimension size is not a multiple of 8, append extra coeffs by repeating the
edges twice.

Example:

# Performs a 3-level reconstruction from Yl,Yh using the 13,19-tap
# filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm3(Yl, Yh, ’near_sym_b’, ’qshift_b’)

6.8 Backends

The following modules provide backend-specific implementations. Usually you won’t need to import these modules
directly; the main API will use an appropriate implementation. Occasionally, however, you may want to benchmark
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one implementation against the other.

6.8.1 NumPy

A backend which uses NumPy to perform the filtering. This backend should always be available.

class dtcwt.numpy.Pyramid(lowpass, highpasses, scales=None)
A representation of a transform domain signal.

Backends are free to implement any class which respects this interface for storing transform-domain signals.
The inverse transform may accept a backend-specific version of this class but should always accept any class
which corresponds to this interface.

lowpass
A NumPy-compatible array containing the coarsest scale lowpass signal.

highpasses
A tuple where each element is the complex subband coefficients for corresponding scales finest to coarsest.

scales
(optional) A tuple where each element is a NumPy-compatible array containing the lowpass signal for
corresponding scales finest to coarsest. This is not required for the inverse and may be None.

class dtcwt.numpy.Transform1d(biort=’near_sym_a’, qshift=’qshift_a’)
An implementation of the 1D DT-CWT in NumPy.

Parameters

• biort – Level 1 wavelets to use. See dtcwt.coeffs.biort().

• qshift – Level >= 2 wavelets to use. See dtcwt.coeffs.qshift().

forward(X, nlevels=3, include_scale=False)
Perform a n-level DTCWT decompostion on a 1D column vector X (or on the columns of a matrix X).

Parameters

• X – 1D real array or 2D real array whose columns are to be transformed

• nlevels – Number of levels of wavelet decomposition

Returns A dtcwt.Pyramid-like object representing the transform result.

If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions.
Otherwise, they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should
be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

inverse(pyramid, gain_mask=None)
Perform an n-level dual-tree complex wavelet (DTCWT) 1D reconstruction.

Parameters

• pyramid – A dtcwt.Pyramid-like object containing the transformed signal.

• gain_mask – Gain to be applied to each subband.

Returns Reconstructed real array.

The l-th element of gain_mask is gain for wavelet subband at level l. If gain_mask[l] == 0, no computation
is performed for band l. Default gain_mask is all ones. Note that l is 0-indexed.

class dtcwt.numpy.Transform2d(biort=’near_sym_a’, qshift=’qshift_a’)
An implementation of the 2D DT-CWT via NumPy. biort and qshift are the wavelets which parameterise the
transform.
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If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coef-
ficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a,
g0b, h1a, h1b, g1a, g1b).

forward(X, nlevels=3, include_scale=False)
Perform a n-level DTCWT-2D decompostion on a 2D matrix X.

Parameters

• X – 2D real array

• nlevels – Number of levels of wavelet decomposition

Returns A dtcwt.Pyramid compatible object representing the transform-domain signal

inverse(pyramid, gain_mask=None)
Perform an n-level dual-tree complex wavelet (DTCWT) 2D reconstruction.

Parameters

• pyramid – A dtcwt.Pyramid-like class holding the transform domain representation
to invert.

• gain_mask – Gain to be applied to each subband.

Returns A numpy-array compatible instance with the reconstruction.

The (d, l)-th element of gain_mask is gain for subband with direction d at level l. If gain_mask[d,l] ==
0, no computation is performed for band (d,l). Default gain_mask is all ones. Note that both d and l are
zero-indexed.

class dtcwt.numpy.Transform3d(biort=’near_sym_a’, qshift=’qshift_a’, ext_mode=4)
An implementation of the 3D DT-CWT via NumPy. biort and qshift are the wavelets which parameterise the
transform. Valid values are documented in dtcwt.coeffs.biort() and dtcwt.coeffs.qshift().

forward(X, nlevels=3, include_scale=False, discard_level_1=False)
Perform a n-level DTCWT-3D decompostion on a 3D matrix X.

Parameters

• X – 3D real array-like object

• nlevels – Number of levels of wavelet decomposition

• biort – Level 1 wavelets to use. See dtcwt.coeffs.biort().

• qshift – Level >= 2 wavelets to use. See dtcwt.coeffs.qshift().

• discard_level_1 – True if level 1 high-pass bands are to be discarded.

Returns a dtcwt.Pyramid instance

Each element of the Pyramid highpasses tuple is a 4D complex array with the 4th dimension having size
28. The 3D slice [l][:,:,:,d] corresponds to the complex higpass coefficients for direction d at level
l where d and l are both 0-indexed.

If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter
coefficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a,
h0b, g0a, g0b, h1a, h1b, g1a, g1b).

There are two values for ext_mode, either 4 or 8. If ext_mode = 4, check whether 1st level is divisible by
2 (if not we raise a ValueError). Also check whether from 2nd level onwards, the coefs can be divided
by 4. If any dimension size is not a multiple of 4, append extra coefs by repeating the edges. If ext_mode
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= 8, check whether 1st level is divisible by 4 (if not we raise a ValueError). Also check whether from
2nd level onwards, the coeffs can be divided by 8. If any dimension size is not a multiple of 8, append
extra coeffs by repeating the edges twice.

If discard_level_1 is True the highpass coefficients at level 1 will not be discarded. (And, in fact, will never
be calculated.) This turns the transform from being 8:1 redundant to being 1:1 redundant at the cost of
no-longer allowing perfect reconstruction. If this option is selected then the first element of the highpasses
tuple will be None. Note that dtcwt.Transform3d.inverse() will accept the first element being
None and will treat it as being zero.

inverse(pyramid)
Perform an n-level dual-tree complex wavelet (DTCWT) 3D reconstruction.

Parameters

• pyramid – The dtcwt.Pyramid-like instance representing the transformed signal.

• biort – Level 1 wavelets to use. See biort().

• qshift – Level >= 2 wavelets to use. See qshift().

• ext_mode – Extension mode. See below.

Returns Reconstructed real image matrix.

If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter
coefficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a,
h0b, g0a, g0b, h1a, h1b, g1a, g1b).

There are two values for ext_mode, either 4 or 8. If ext_mode = 4, check whether 1st level is divisible by
2 (if not we raise a ValueError). Also check whether from 2nd level onwards, the coefs can be divided
by 4. If any dimension size is not a multiple of 4, append extra coefs by repeating the edges. If ext_mode
= 8, check whether 1st level is divisible by 4 (if not we raise a ValueError). Also check whether from
2nd level onwards, the coeffs can be divided by 8. If any dimension size is not a multiple of 8, append
extra coeffs by repeating the edges twice.

dtcwt.numpy.lowlevel.colfilter(X, h)
Filter the columns of image X using filter vector h, without decimation. If len(h) is odd, each output sample is
aligned with each input sample and Y is the same size as X. If len(h) is even, each output sample is aligned with
the mid point of each pair of input samples, and Y.shape = X.shape + [1 0].

Parameters

• X – an image whose columns are to be filtered

• h – the filter coefficients.

Returns Y the filtered image.

dtcwt.numpy.lowlevel.colifilt(X, ha, hb)
Filter the columns of image X using the two filters ha and hb = reverse(ha). ha operates on the odd samples of
X and hb on the even samples. Both filters should be even length, and h should be approx linear phase with a
quarter sample advance from its mid pt (i.e :math:‘|h(m/2)| > |h(m/2 + 1)|).

ext left edge right edge ext
Level 2: ! | ! | !
+q filt on x b b a a a a b b
-q filt on o a a b b b b a a
Level 1: ! | ! | !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a

6.8. Backends 49



dtcwt Documentation, Release 0.9.0

The output is interpolated by two from the input sample rate and the results from the two filters, Ya and Yb,
are interleaved to give Y. Symmetric extension with repeated end samples is used on the composite X columns
before each filter is applied.

dtcwt.numpy.lowlevel.coldfilt(X, ha, hb)
Filter the columns of image X using the two filters ha and hb = reverse(ha). ha operates on the odd samples of
X and hb on the even samples. Both filters should be even length, and h should be approx linear phase with a
quarter sample advance from its mid pt (i.e. |ℎ(𝑚/2)| > |ℎ(𝑚/2 + 1)|).

ext top edge bottom edge ext
Level 1: ! | ! | !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a
Level 2: ! | ! | !
+q filt on x b b a a a a b b
-q filt on o a a b b b b a a

The output is decimated by two from the input sample rate and the results from the two filters, Ya and Yb,
are interleaved to give Y. Symmetric extension with repeated end samples is used on the composite X columns
before each filter is applied.

Raises ValueError if the number of rows in X is not a multiple of 4, the length of ha does not match hb or the
lengths of ha or hb are non-even.

6.8.2 OpenCL

Provide low-level OpenCL accelerated operations. This backend requires that PyOpenCL be installed.

class dtcwt.opencl.Pyramid(lowpass, highpasses, scales=None)
An interface-compatible version of dtcwt.Pyramid where the initialiser arguments are assumed to by
pyopencl.array.Array instances.

The attributes defined in dtcwt.Pyramid are implemented via properties. The original OpenCL arrays may
be accessed via the cl_... attributes.

Note: The copy from device to host is performed once and then memoized. This makes repeated access to the
host-side attributes efficient but will mean that any changes to the device-side arrays will not be reflected in the
host-side attributes after their first access. You should not be modifying the arrays once you return an instance
of this class anyway but if you do, beware!

cl_lowpass
The CL array containing the lowpass image.

cl_highpasses
A tuple of CL arrays containing the subband images.

cl_scales
(optional) Either None or a tuple of lowpass images for each scale.

class dtcwt.opencl.Transform2d(biort=’near_sym_a’, qshift=’qshift_a’, queue=None)
An implementation of the 2D DT-CWT via OpenCL. biort and qshift are the wavelets which parameterise the
transform.

If queue is non-None it is an instance of pyopencl.CommandQueue which is used to compile and execute
the OpenCL kernels which implement the transform. If it is None, the first available compute device is used.

If biort or qshift are strings, they are used as an argument to the dtcwt.coeffs.biort() or
dtcwt.coeffs.qshift() functions. Otherwise, they are interpreted as tuples of vectors giving filter coef-
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ficients. In the biort case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should be (h0a, h0b, g0a,
g0b, h1a, h1b, g1a, g1b).

Note: At the moment only the forward transform is accelerated. The inverse transform uses the NumPy
backend.

forward(X, nlevels=3, include_scale=False)
Perform a n-level DTCWT-2D decompostion on a 2D matrix X.

Parameters

• X – 2D real array

• nlevels – Number of levels of wavelet decomposition

Returns A dtcwt.Pyramid compatible object representing the transform-domain signal

Note: X may be a pyopencl.array.Array instance which has already been copied to the device. In
which case, it must be 2D. (I.e. a vector will not be auto-promoted.)

inverse(pyramid, gain_mask=None)
Perform an n-level dual-tree complex wavelet (DTCWT) 2D reconstruction.

Parameters

• pyramid – A dtcwt.Pyramid-like class holding the transform domain representation
to invert.

• gain_mask – Gain to be applied to each subband.

Returns A numpy-array compatible instance with the reconstruction.

The (d, l)-th element of gain_mask is gain for subband with direction d at level l. If gain_mask[d,l] ==
0, no computation is performed for band (d,l). Default gain_mask is all ones. Note that both d and l are
zero-indexed.

dtcwt.opencl.lowlevel.axis_convolve(X, h, axis=0, queue=None, output=None)
Filter along an of X using filter vector h. If h has odd length, each output sample is aligned with each input
sample and Y is the same size as X. If h has even length, each output sample is aligned with the mid point of
each pair of input samples, and the output matrix’s shape is increased by one along the convolution axis.

After convolution, the pyopencl.array.Array instance holding the device-side output is returned. This
may be accessed on the host via to_array().

The axis of convolution is specified by axis. The default direction of convolution is column-wise.

If queue is non-None, it should be a pyopencl.CommandQueue instance which is used to perform the
computation. If None, a default global queue is used.

If output is non-None, it should be a pyopencl.array.Array instance which the result is written into. If
None, an output array is created.

dtcwt.opencl.lowlevel.coldfilt(X, ha, hb)
Filter the columns of image X using the two filters ha and hb = reverse(ha). ha operates on the odd samples of
X and hb on the even samples. Both filters should be even length, and h should be approx linear phase with a
quarter sample advance from its mid pt (i.e. |ℎ(𝑚/2)| > |ℎ(𝑚/2 + 1)|).

ext top edge bottom edge ext
Level 1: ! | ! | !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a
Level 2: ! | ! | !
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+q filt on x b b a a a a b b
-q filt on o a a b b b b a a

The output is decimated by two from the input sample rate and the results from the two filters, Ya and Yb,
are interleaved to give Y. Symmetric extension with repeated end samples is used on the composite X columns
before each filter is applied.

Raises ValueError if the number of rows in X is not a multiple of 4, the length of ha does not match hb or the
lengths of ha or hb are non-even.

dtcwt.opencl.lowlevel.colfilter(X, h)
Filter the columns of image X using filter vector h, without decimation. If len(h) is odd, each output sample is
aligned with each input sample and Y is the same size as X. If len(h) is even, each output sample is aligned with
the mid point of each pair of input samples, and Y.shape = X.shape + [1 0].

The filtering will be accelerated via OpenCL.

Parameters

• X – an image whose columns are to be filtered

• h – the filter coefficients.

Returns Y the filtered image.

dtcwt.opencl.lowlevel.colifilt(X, ha, hb)
Filter the columns of image X using the two filters ha and hb = reverse(ha). ha operates on the odd samples of
X and hb on the even samples. Both filters should be even length, and h should be approx linear phase with a
quarter sample advance from its mid pt (i.e :math:‘|h(m/2)| > |h(m/2 + 1)|).

ext left edge right edge ext
Level 2: ! | ! | !
+q filt on x b b a a a a b b
-q filt on o a a b b b b a a
Level 1: ! | ! | !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a

The output is interpolated by two from the input sample rate and the results from the two filters, Ya and Yb,
are interleaved to give Y. Symmetric extension with repeated end samples is used on the composite X columns
before each filter is applied.

dtcwt.opencl.lowlevel.get_default_queue(*args, **kwargs)
Return the default queue used for computation if one is not specified.

This function is memoized and so only one queue is created after multiple invocations.
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