
dtcwt Documentation
Release 0.6

Rich Wareham, Nick Kingsbury, Cian Shaffrey

November 27, 2013

Contents

i

ii

dtcwt Documentation, Release 0.6

This library provides support for computing 1D, 2D and 3D dual-tree complex wavelet transforms and their inverse
in Python. The interface is simple and easy to use. As a quick example, a 1D DT-CWT can be performed from the
Python console in a single line:

>>> import dtcwt
>>> Yl, Yh = dtcwt.dtwavexfm([1,2,3,4], nlevels=3) # 3 levels, default wavelets

The interface is intentionally similar to the existing MATLAB dual-tree complex wavelet transform toolbox provided
by Prof. Nick Kingsbury. This library is intended to ease the porting of algorithms written using the original MATLAB
toolbox to Python.

Contents 1

http://www-sigproc.eng.cam.ac.uk/~ngk/

dtcwt Documentation, Release 0.6

2 Contents

CHAPTER 1

Features of note

The features of the dtcwt library are:

• 1D, 2D and 3D forward and inverse Dual-tree Complex Wavelet Transform implementations.

• API similarity with the DTCWT MATLAB toolbox.

• Automatic selection of single versus double precision calculation.

• Built-in support for the most common complex wavelet families.

3

dtcwt Documentation, Release 0.6

4 Chapter 1. Features of note

CHAPTER 2

Contents

2.1 Getting Started

This section will guide you through using the dtcwt library. Once installed, you are most likely to use one of these
functions:

• dtcwt.dtwavexfm() – 1D DT-CWT transform.

• dtcwt.dtwaveifm() – Inverse 1D DT-CWT transform.

• dtcwt.dtwavexfm2() – 2D DT-CWT transform.

• dtcwt.dtwaveifm2() – Inverse 2D DT-CWT transform.

• dtcwt.dtwavexfm3() – 3D DT-CWT transform.

• dtcwt.dtwaveifm3() – Inverse 3D DT-CWT transform.

See API Reference for full details on how to call these functions. We shall present some simple usage below.

2.1.1 Installation

The easiest way to install dtcwt is via easy_install or pip:

$ pip install dtcwt

If you want to check out the latest in-development version, look at the project’s GitHub page. Once checked out,
installation is based on setuptools and follows the usual conventions for a Python project:

$ python setup.py install

(Although the develop command may be more useful if you intend to perform any significant modification to the
library.) A test suite is provided so that you may verify the code works on your system:

$ python setup.py nosetests

This will also write test-coverage information to the cover/ directory.

5

https://github.com/rjw57/dtcwt

dtcwt Documentation, Release 0.6

Building the documentation

There is a pre-built version of this documentation available online and you can build your own copy via the Sphinx
documentation system:

$ python setup.py build_sphinx

Compiled documentation may be found in build/docs/html/.

2.1.2 1D transform

This example generates two 1D random walks and demonstrates reconstructing them using the forward and inverse
1D transforms. Note that dtcwt.dtwavexfm() and dtcwt.dtwaveifm() will transform columns of an input
array independently:

import numpy as np
from matplotlib.pyplot import *

Generate a 300x2 array of a random walk
vecs = np.cumsum(np.random.rand(300,2) - 0.5, 0)

Show input
figure(1)
plot(vecs)
title(’Input’)

import dtcwt

1D transform
Yl, Yh = dtcwt.dtwavexfm(vecs)

Inverse
vecs_recon = dtcwt.dtwaveifm(Yl, Yh)

Show output
figure(2)
plot(vecs_recon)
title(’Output’)

Show error
figure(3)
plot(vecs_recon - vecs)
title(’Reconstruction error’)

print(’Maximum reconstruction error: {0}’.format(np.max(np.abs(vecs - vecs_recon))))

show()

2.1.3 2D transform

Using the pylab environment (part of matplotlib) we can perform a simple example where we transform the standard
‘Lena’ image and show the level 2 wavelet coefficients:

Load the Lena image from the Internet into a StringIO object
from StringIO import StringIO
from urllib2 import urlopen

6 Chapter 2. Contents

https://dtcwt.readthedocs.org/

dtcwt Documentation, Release 0.6

LENA_URL = ’http://www.ece.rice.edu/~wakin/images/lena512.pgm’
lena_file = StringIO(urlopen(LENA_URL).read())

Parse the lena file and rescale to be in the range (0,1]
from scipy.misc import imread
lena = imread(lena_file) / 255.0

from matplotlib.pyplot import *
import numpy as np

Show lena on the left
figure(1)
imshow(lena, cmap=cm.gray, clim=(0,1))

import dtcwt

Compute two levels of dtcwt with the defaul wavelet family
Yh, Yl = dtcwt.dtwavexfm2(lena, 2)

Show the absolute images for each direction in level 2.
Note that the 2nd level has index 1 since the 1st has index 0.
figure(2)
for slice_idx in xrange(Yl[1].shape[2]):

subplot(2, 3, slice_idx)
imshow(np.abs(Yl[1][:,:,slice_idx]), cmap=cm.spectral, clim=(0, 1))

Show the phase images for each direction in level 2.
figure(3)
for slice_idx in xrange(Yl[1].shape[2]):

subplot(2, 3, slice_idx)
imshow(np.angle(Yl[1][:,:,slice_idx]), cmap=cm.hsv, clim=(-np.pi, np.pi))

show()

If the library is correctly installed and you also have matplotlib installed, you should see these three figures:

2.1.4 3D transform

In the examples below I assume you’ve imported pyplot and numpy and, of course, the dtcwt library itself:

import numpy as np
from matplotlib.pyplot import *
from dtcwt import *

We can demonstrate the 3D transform by generating a 64x64x64 array which contains the image of a sphere:

GRID_SIZE = 64
SPHERE_RAD = int(0.45 * GRID_SIZE) + 0.5

grid = np.arange(-(GRID_SIZE>>1), GRID_SIZE>>1)
X, Y, Z = np.meshgrid(grid, grid, grid)
r = np.sqrt(X*X + Y*Y + Z*Z)

sphere = 0.5 + 0.5 * np.clip(SPHERE_RAD-r, -1, 1)

If we look at the central slice of this image, it looks like a circle:

2.1. Getting Started 7

dtcwt Documentation, Release 0.6

8 Chapter 2. Contents

dtcwt Documentation, Release 0.6

2.1. Getting Started 9

dtcwt Documentation, Release 0.6

10 Chapter 2. Contents

dtcwt Documentation, Release 0.6

imshow(sphere[:,:,GRID_SIZE>>1], interpolation=’none’, cmap=cm.gray)

Performing the 3 level DT-CWT with the defaul wavelet selection is easy:

Yl, Yh = dtwavexfm3(sphere, 3)

The function returns the lowest level low pass image and a tuple of complex subband coefficients:

>>> print(Yl.shape)
(16, 16, 16)
>>> for subbands in Yh:
... print(subbands.shape)
(32, 32, 32, 28)
(16, 16, 16, 28)
(8, 8, 8, 28)

Performing the inverse transform should result in perfect reconstruction:

>>> Z = dtwaveifm3(Yl, Yh)
>>> print(np.abs(Z - ellipsoid).max()) # Should be < 1e-12
8.881784197e-15

If you plot the locations of the large complex coefficients, you can see the directional sensitivity of the transform:

from mpl_toolkits.mplot3d import Axes3D

figure(figsize=(16,16))
nplts = Yh[-1].shape[3]
nrows = np.ceil(np.sqrt(nplts))
ncols = np.ceil(nplts / nrows)
W = np.max(Yh[-1].shape[:3])
for idx in xrange(Yh[-1].shape[3]):

2.1. Getting Started 11

dtcwt Documentation, Release 0.6

C = np.abs(Yh[-1][:,:,:,idx])
ax = gcf().add_subplot(nrows, ncols, idx+1, projection=’3d’)
ax.set_aspect(’equal’)
good = C > 0.2*C.max()
x,y,z = np.nonzero(good)
ax.scatter(x, y, z, c=C[good].ravel())
ax.auto_scale_xyz((0,W), (0,W), (0,W))

tight_layout()

For a further directional sensitivity example, see Showing 3D Directional Sensitivity.

12 Chapter 2. Contents

dtcwt Documentation, Release 0.6

2.2 Example scripts

2.2.1 Showing 3D Directional Sensitivity

The 3d_dtcwt_directionality.py script in the examples directory shows how one may demonstrate the
directional sensitivity of the 3D DT-CWT complex subband coefficients. It computes empirically the maximally sen-
sitive directions for each subband and plots them in an interactive figure using matplotlib. A screenshot is reproduced
below:

There are some points to note about this diagram. Each subband is labeled sich that ‘1’ refers to the first subband, ‘5’
the fifth and so forth. On this diagram the subbands are all four apart reflecting the fact that, for example, subbands 2,
3 and 4 are positioned in the other four quadrants of the upper hemisphere reflecting the position of subband 1. There
are seven visible subband directions in the +ve quadrant of the hemisphere and hence there are 28 directions in total
over all four quadrants.

2.2. Example scripts 13

dtcwt Documentation, Release 0.6

The source for the script is shown below:

#!/bin/python

"""
An example of the directional selectivity of 3D DT-CWT coefficients.

This example creates a 3D array holding an image of a sphere and performs the
3D DT-CWT transform on it. The locations of maxima (and their images about the
mid-point of the image) are determined for each complex coefficient at level 2.
These maxima points are then shown on a single plot to demonstrate the
directions in which the 3D DT-CWT transform is selective.

"""

Import the libraries we need
from matplotlib.pyplot import *
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from dtcwt import dtwavexfm3, dtwaveifm3, biort, qshift

Specify details about sphere and grid size
GRID_SIZE = 128
SPHERE_RAD = int(0.45 * GRID_SIZE) + 0.5

Compute an image of the sphere
grid = np.arange(-(GRID_SIZE>>1), GRID_SIZE>>1)
X, Y, Z = np.meshgrid(grid, grid, grid)
r = np.sqrt(X*X + Y*Y + Z*Z)
sphere = (0.5 + np.clip(SPHERE_RAD-r, -0.5, 0.5)).astype(np.float32)

Specify number of levels and wavelet family to use
nlevels = 2
b = biort(’near_sym_a’)
q = qshift(’qshift_a’)

Form the DT-CWT of the sphere. We use discard_level_1 since we’re
uninterested in the inverse transform and this saves us some memory.
Yl, Yh = dtwavexfm3(sphere, nlevels, b, q, discard_level_1=True)

Plot maxima
figure(figsize=(8,8))

ax = gcf().add_subplot(1,1,1, projection=’3d’)
ax.set_aspect(’equal’)
ax.view_init(35, 75)

Plot unit sphere +ve octant
thetas = np.linspace(0, np.pi/2, 10)
phis = np.linspace(0, np.pi/2, 10)

def sphere_to_xyz(r, theta, phi):
st, ct = np.sin(theta), np.cos(theta)
sp, cp = np.sin(phi), np.cos(phi)
return r * np.asarray((st*cp, st*sp, ct))

tris = []
rad = 0.99 # so that points plotted latter are not z-clipped

14 Chapter 2. Contents

dtcwt Documentation, Release 0.6

for t1, t2 in zip(thetas[:-1], thetas[1:]):
for p1, p2 in zip(phis[:-1], phis[1:]):

tris.append([
sphere_to_xyz(rad, t1, p1),
sphere_to_xyz(rad, t1, p2),
sphere_to_xyz(rad, t2, p2),
sphere_to_xyz(rad, t2, p1),

])

sphere = Poly3DCollection(tris, facecolor=’w’, edgecolor=(0.6,0.6,0.6))
ax.add_collection3d(sphere)

locs = []
scale = 1.1
for idx in xrange(Yh[-1].shape[3]):

Z = Yh[-1][:,:,:,idx]
C = np.abs(Z)
max_loc = np.asarray(np.unravel_index(np.argmax(C), C.shape)) - np.asarray(C.shape)*0.5
max_loc /= np.sqrt(np.sum(max_loc * max_loc))

Only record directions in the +ve octant (or those from the -ve quadrant
which can be flipped).
if np.all(np.sign(max_loc) == 1):

locs.append(max_loc)
ax.text(max_loc[0] * scale, max_loc[1] * scale, max_loc[2] * scale, str(idx+1))

elif np.all(np.sign(max_loc) == -1):
locs.append(-max_loc)
ax.text(-max_loc[0] * scale, -max_loc[1] * scale, -max_loc[2] * scale, str(idx+1))

Plot all directions as a scatter plot
locs = np.asarray(locs)
ax.scatter(locs[:,0], locs[:,1], locs[:,2], c=np.arange(locs.shape[0]))

w = 1.1
ax.auto_scale_xyz([0, w], [0, w], [0, w])

legend()
title(’3D DT-CWT subband directions for +ve hemisphere quadrant’)
tight_layout()

show()

vim:sw=4:sts=4:et

2.3 API Reference

2.3.1 Computing the DT-CWT

dtcwt.dtwavexfm(X, nlevels=3, biort=’near_sym_a’, qshift=’qshift_a’, include_scale=False)
Perform a n-level DTCWT decompostion on a 1D column vector X (or on the columns of a matrix X).

Parameters

• X – 1D real array or 2D real array whose columns are to be transformed

• nlevels – Number of levels of wavelet decomposition

2.3. API Reference 15

dtcwt Documentation, Release 0.6

• biort – Level 1 wavelets to use. See biort().

• qshift – Level >= 2 wavelets to use. See qshift().

Returns Yl The real lowpass image from the final level

Returns Yh A tuple containing the (N, M, 6) shape complex highpass subimages for each level.

Returns Yscale If include_scale is True, a tuple containing real lowpass coefficients for every scale.

If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions. Otherwise,
they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should be (h0o, g0o, h1o,
g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 5-level transform on the real image X using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm(X,5,’near_sym_b’,’qshift_b’)

dtcwt.dtwaveifm(Yl, Yh, biort=’near_sym_a’, qshift=’qshift_a’, gain_mask=None)
Perform an n-level dual-tree complex wavelet (DTCWT) 1D reconstruction.

Parameters

• Yl – The real lowpass subband from the final level

• Yh – A sequence containing the complex highpass subband for each level.

• biort – Level 1 wavelets to use. See biort().

• qshift – Level >= 2 wavelets to use. See qshift().

• gain_mask – Gain to be applied to each subband.

Returns Z Reconstructed real array.

The l-th element of gain_mask is gain for wavelet subband at level l. If gain_mask[l] == 0, no computation is
performed for band l. Default gain_mask is all ones. Note that l is 0-indexed.

If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions. Otherwise,
they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should be (h0o, g0o, h1o,
g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a reconstruction from Yl,Yh using the 13,19-tap filters
for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm(Yl, Yh, ’near_sym_b’, ’qshift_b’)

dtcwt.dtwavexfm2(X, nlevels=3, biort=’near_sym_a’, qshift=’qshift_a’, include_scale=False)
Perform a n-level DTCWT-2D decompostion on a 2D matrix X.

Parameters

• X – 2D real array

• nlevels – Number of levels of wavelet decomposition

• biort – Level 1 wavelets to use. See biort().

• qshift – Level >= 2 wavelets to use. See qshift().

Returns Yl The real lowpass image from the final level

Returns Yh A tuple containing the complex highpass subimages for each level.

16 Chapter 2. Contents

dtcwt Documentation, Release 0.6

Returns Yscale If include_scale is True, a tuple containing real lowpass coefficients for every scale.

If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions. Otherwise,
they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should be (h0o, g0o, h1o,
g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 3-level transform on the real image X using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm2(X, 3, ’near_sym_b’, ’qshift_b’)

dtcwt.dtwaveifm2(Yl, Yh, biort=’near_sym_a’, qshift=’qshift_a’, gain_mask=None)
Perform an n-level dual-tree complex wavelet (DTCWT) 2D reconstruction.

Parameters

• Yl – The real lowpass subband from the final level

• Yh – A sequence containing the complex highpass subband for each level.

• biort – Level 1 wavelets to use. See biort().

• qshift – Level >= 2 wavelets to use. See qshift().

• gain_mask – Gain to be applied to each subband.

Returns Z Reconstructed real array

The (d, l)-th element of gain_mask is gain for subband with direction d at level l. If gain_mask[d,l] == 0, no
computation is performed for band (d,l). Default gain_mask is all ones. Note that both d and l are zero-indexed.

If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions. Otherwise,
they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should be (h0o, g0o, h1o,
g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 3-level reconstruction from Yl,Yh using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm2(Yl, Yh, ’near_sym_b’, ’qshift_b’)

dtcwt.dtwavexfm3(X, nlevels=3, biort=’near_sym_a’, qshift=’qshift_a’, ext_mode=4, dis-
card_level_1=False)

Perform a n-level DTCWT-3D decompostion on a 3D matrix X.

Parameters

• X – 3D real array-like object

• nlevels – Number of levels of wavelet decomposition

• biort – Level 1 wavelets to use. See biort().

• qshift – Level >= 2 wavelets to use. See qshift().

• ext_mode – Extension mode. See below.

• discard_level_1 – True if level 1 high-pass bands are to be discarded.

Returns Yl The real lowpass image from the final level

Returns Yh A tuple containing the complex highpass subimages for each level.

Each element of Yh is a 4D complex array with the 4th dimension having size 28. The 3D slice
Yh[l][:,:,:,d] corresponds to the complex higpass coefficients for direction d at level l where d and l
are both 0-indexed.

2.3. API Reference 17

dtcwt Documentation, Release 0.6

If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions. Otherwise,
they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should be (h0o, g0o, h1o,
g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

There are two values for ext_mode, either 4 or 8. If ext_mode = 4, check whether 1st level is divisible by 2 (if not
we raise a ValueError). Also check whether from 2nd level onwards, the coefs can be divided by 4. If any
dimension size is not a multiple of 4, append extra coefs by repeating the edges. If ext_mode = 8, check whether
1st level is divisible by 4 (if not we raise a ValueError). Also check whether from 2nd level onwards, the
coeffs can be divided by 8. If any dimension size is not a multiple of 8, append extra coeffs by repeating the
edges twice.

If discard_level_1 is True the highpass coefficients at level 1 will be discarded. (And, in fact, will never be
calculated.) This turns the transform from being 8:1 redundant to being 1:1 redundant at the cost of no-longer
allowing perfect reconstruction. If this option is selected then Yh[0] will be None. Note that dtwaveifm3()
will accepts Yh[0] being None and will treat it as being zero.

Example:

Performs a 3-level transform on the real 3D array X using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm3(X, 3, ’near_sym_b’, ’qshift_b’)

dtcwt.dtwaveifm3(Yl, Yh, biort=’near_sym_a’, qshift=’qshift_a’, ext_mode=4)
Perform an n-level dual-tree complex wavelet (DTCWT) 3D reconstruction.

Parameters

• Yl – The real lowpass subband from the final level

• Yh – A sequence containing the complex highpass subband for each level.

• biort – Level 1 wavelets to use. See biort().

• qshift – Level >= 2 wavelets to use. See qshift().

• ext_mode – Extension mode. See below.

Returns Z Reconstructed real image matrix.

If biort or qshift are strings, they are used as an argument to the biort() or qshift() functions. Otherwise,
they are interpreted as tuples of vectors giving filter coefficients. In the biort case, this should be (h0o, g0o, h1o,
g1o). In the qshift case, this should be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

There are two values for ext_mode, either 4 or 8. If ext_mode = 4, check whether 1st level is divisible by 2 (if not
we raise a ValueError). Also check whether from 2nd level onwards, the coefs can be divided by 4. If any
dimension size is not a multiple of 4, append extra coefs by repeating the edges. If ext_mode = 8, check whether
1st level is divisible by 4 (if not we raise a ValueError). Also check whether from 2nd level onwards, the
coeffs can be divided by 8. If any dimension size is not a multiple of 8, append extra coeffs by repeating the
edges twice.

Example:

Performs a 3-level reconstruction from Yl,Yh using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm3(Yl, Yh, ’near_sym_b’, ’qshift_b’)

dtcwt.biort(name)
Load level 1 wavelet by name.

Parameters name – a string specifying the wavelet family name

Returns a tuple of vectors giving filter coefficients

18 Chapter 2. Contents

dtcwt Documentation, Release 0.6

Name Wavelet
antonini Antonini 9,7 tap filters.
legall LeGall 5,3 tap filters.
near_sym_a Near-Symmetric 5,7 tap filters.
near_sym_b Near-Symmetric 13,19 tap filters.

Return a tuple whose elements are a vector specifying the h0o, g0o, h1o and g1o coefficients.

Raises

• IOError – if name does not correspond to a set of wavelets known to the library.

• ValueError – if name specifies a qshift() wavelet.

dtcwt.qshift(name)
Load level >=2 wavelet by name,

Parameters name – a string specifying the wavelet family name

Returns a tuple of vectors giving filter coefficients

Name Wavelet
qshift_06 Quarter Sample Shift Orthogonal (Q-Shift) 10,10 tap filters, (only 6,6 non-zero taps).
qshift_a Q-shift 10,10 tap filters, (with 10,10 non-zero taps, unlike qshift_06).
qshift_b Q-Shift 14,14 tap filters.
qshift_c Q-Shift 16,16 tap filters.
qshift_d Q-Shift 18,18 tap filters.

Return a tuple whose elements are a vector specifying the h0a, h0b, g0a, g0b, h1a, h1b, g1a and g1b coefficients.

Raises

• IOError – if name does not correspond to a set of wavelets known to the library.

• ValueError – if name specifies a biort() wavelet.

2.3.2 Keypoint analysis

dtcwt.keypoint.find_keypoints(highpass_subbands, method=None, alpha=1.0, beta=0.4,
kappa=0.16666666666666666, threshold=None,
max_points=None, upsample_keypoint_energy=None, up-
sample_subbands=None, refine_positions=True, skip_levels=1)

Parameters

• highpass_subbands – (NxMx6) matrix of highpass subband images

• method – (optional) string specifying which keypoint energy method to use

• alpha – (optional) scale parameter for ’fauqueur’ method

• beta – (optional) shape parameter for ’fauqueur’ method

• kappa – (optiona) suppression parameter for ’kingsbury’ method

• threshold – (optional) minimum keypoint energy of returned keypoints

• max_points – (optional) maximum number of keypoints to return

• upsample_keypoint_energy – is non-None, a string specifying a method used to upscale
the keypoint energy map before finding keypoints

• upsample_subands – is non-None, a string specifying a method used to upscale the sub-
band image before finding keypoints

2.3. API Reference 19

dtcwt Documentation, Release 0.6

• refine_positions – (optional) should the keypoint positions be refined to sub-pixel accuracy

• skip_levels – (optional) number of levels of the transform to ignore before looking for
keypoints

Returns (Px4) array of P keypoints in image co-ordinates

Warning: The interface and behaviour of this function is the subject of an open research project. It
is provided in this release as a preview of forthcoming functionality but it is subject to change between
releases.

The rows of the returned keypoint array give the x co-ordinate, y co-ordinate, scale and keypoint energy. The
rows are sorted in order of decreasing keypoint energy.

If refine_positions is True then the positions (and energy) of the keypoints will be refined to sub-pixel accuracy
by fitting a quadratic patch. If refine_positions is False then the keypoint locations will be those corresponding
directly to pixel-wise maxima of the subband images.

The max_points and threshold parameters are cumulative: if both are specified then the max_points greatest
energy keypoints with energy greater than threshold will be returned.

Usually the keypoint energies returned from the finest scale level are dominated by noise and so one usually
wants to specify skip_levels to be 1 or 2. If skip_levels is 0 then all levels will be used to compute keypoint
energy.

The upsample_subbands and upsample_keypoint_energy parameters are used to control whether the individual
subband coefficients and/org the keypoint energy map are upscaled by 2 before finding keypoints. If these
parameters are None then no corresponding upscaling is performed. If non-None they specify the upscale
method as outlined in dtcwt.sampling.upsample().

If method is None, the default ’fauqueur’ method is used.

Name Description Parameters used
fauqueur Geometric mean of absolute values[1] alpha, beta
bendale Minimum absolute value[2] none
kingsbury Cross-product of orthogonal subbands kappa

[1] Julien Fauqueur, Nick Kingsbury, and Ryan Anderson. Multiscale Keypoint Detection us-
ing the Dual-Tree Complex Wavelet Transform. 2006 International Conference on Image Pro-
cessing, pages 1625-1628, October 2006. ISSN 1522-4880. doi: 10.1109/ICIP.2006.312656.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4106857.

[2] Pashmina Bendale, Bill Triggs, and Nick Kingsbury. Multiscale Keypoint Analysis based
on Complex Wavelets. In British Machine Vision Con-ference (BMVC), 2010. http://www-
sigproc.eng.cam.ac.uk/~pb397/publications/BTK_BMVC_2010_abstract.pdf.

2.3.3 Image sampling

Rescaling and re-sampling high- and low-pass subbands.

dtcwt.sampling.sample(im, xs, ys, method=None)
Sample image at (x,y) given by elements of xs and ys. Both xs and ys must have identical shape and output will
have this same shape. The location (x,y) refers to the centre of im[y,x]. Samples at fractional locations are
calculated using the method specified by method (or ’lanczos’ if method is None.)

Parameters

• im – array to sample from

• xs – x co-ordinates to sample

20 Chapter 2. Contents

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4106857
http://www-sigproc.eng.cam.ac.uk/~pb397/publications/BTK_BMVC_2010_abstract.pdf
http://www-sigproc.eng.cam.ac.uk/~pb397/publications/BTK_BMVC_2010_abstract.pdf

dtcwt Documentation, Release 0.6

• ys – y co-ordinates to sample

• method – one of ‘bilinear’, ‘lanczos’ or ‘nearest’

Raises ValueError if xs and ys have differing shapes

dtcwt.sampling.sample_highpass(im, xs, ys, method=None)
As sample() except that the highpass image is first phase shifted to be centred on approximately DC.

dtcwt.sampling.rescale(im, shape, method=None)
Return a resampled version of im scaled to shape.

Since the centre of pixel (x,y) has co-ordinate (x,y) the extent of im is actually x ∈ (−0.5, w − 0.5] and
y ∈ (−0.5, h− 0.5] where (y,x) is im.shape. This returns a sampled version of im that has the same extent as
a shape-sized array.

dtcwt.sampling.rescale_highpass(im, shape, method=None)
As rescale() except that the highpass image is first phase shifted to be centred on approximately DC.

dtcwt.sampling.upsample(image, method=None)
Specialised function to upsample an image by a factor of two using a specified sampling method. If image is an
array of shape (NxMx...) then the output will have shape (2Nx2Mx...). Only rows and columns are upsampled,
depth axes and greater are interpolated but are not upsampled.

Parameters

• image – an array containing the image to upsample

• method – if non-None, a string specifying the sampling method to use.

If method is None, the default sampling method ’lanczos’ is used. The following sampling methods are
supported:

Name Description
nearest Nearest-neighbour sampling
bilinear Bilinear sampling
lanczos Lanczos sampling with window radius of 3

dtcwt.sampling.upsample_highpass(im, method=None)
As upsample() except that the highpass image is first phase rolled so that the filter has approximate DC
centre frequency. The upshot is that this is the function to use when re-sampling complex subband images.

2.3.4 Low-level support functions

A normal user should not need to call these functions but they are documented here just in case you do.

dtcwt.lowlevel.appropriate_complex_type_for(X)
Return an appropriate complex data type depending on the type of X. If X is already complex, return that, if it is
floating point return a complex type of the appropriate size and if it is integer, choose an complex floating point
type depending on the result of numpy.asfarray().

dtcwt.lowlevel.as_column_vector(v)
Return v as a column vector with shape (N,1).

dtcwt.lowlevel.asfarray(X)
Similar to numpy.asfarray() except that this function tries to preserve the original datatype of X if it is
already a floating point type and will pass floating point arrays through directly without copying.

dtcwt.lowlevel.coldfilt(X, ha, hb)
Filter the columns of image X using the two filters ha and hb = reverse(ha). ha operates on the odd samples of

2.3. API Reference 21

dtcwt Documentation, Release 0.6

X and hb on the even samples. Both filters should be even length, and h should be approx linear phase with a
quarter sample advance from its mid pt (i.e. |h(m/2)| > |h(m/2 + 1)|).

ext top edge bottom edge ext
Level 1: ! | ! | !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a
Level 2: ! | ! | !
+q filt on x b b a a a a b b
-q filt on o a a b b b b a a

The output is decimated by two from the input sample rate and the results from the two filters, Ya and Yb,
are interleaved to give Y. Symmetric extension with repeated end samples is used on the composite X columns
before each filter is applied.

Raises ValueError if the number of rows in X is not a multiple of 4, the length of ha does not match hb or the
lengths of ha or hb are non-even.

dtcwt.lowlevel.colfilter(X, h)
Filter the columns of image X using filter vector h, without decimation. If len(h) is odd, each output sample is
aligned with each input sample and Y is the same size as X. If len(h) is even, each output sample is aligned with
the mid point of each pair of input samples, and Y.shape = X.shape + [1 0].

Parameters

• X – an image whose columns are to be filtered

• h – the filter coefficients.

Returns Y the filtered image.

dtcwt.lowlevel.colifilt(X, ha, hb)
Filter the columns of image X using the two filters ha and hb = reverse(ha). ha operates on the odd samples of
X and hb on the even samples. Both filters should be even length, and h should be approx linear phase with a
quarter sample advance from its mid pt (i.e :math:‘|h(m/2)| > |h(m/2 + 1)|).

ext left edge right edge ext
Level 2: ! | ! | !
+q filt on x b b a a a a b b
-q filt on o a a b b b b a a
Level 1: ! | ! | !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a

The output is interpolated by two from the input sample rate and the results from the two filters, Ya and Yb,
are interleaved to give Y. Symmetric extension with repeated end samples is used on the composite X columns
before each filter is applied.

dtcwt.lowlevel.reflect(x, minx, maxx)
Reflect the values in matrix x about the scalar values minx and maxx. Hence a vector x containing a long linearly
increasing series is converted into a waveform which ramps linearly up and down between minx and maxx. If x
contains integers and minx and maxx are (integers + 0.5), the ramps will have repeated max and min samples.

22 Chapter 2. Contents

CHAPTER 3

Licence

The original toolbox is copyrighted and there are some restrictions on use which are outlined in the file
ORIGINAL_README.txt. Aside from portions directly derived from the original MATLAB toolbox, any addi-
tions in this library and this documentation are licensed under the 2-clause BSD licence as documented in the file
COPYING.txt.

23

dtcwt Documentation, Release 0.6

24 Chapter 3. Licence

Python Module Index

d
dtcwt, ??
dtcwt.keypoint, ??
dtcwt.lowlevel, ??
dtcwt.sampling, ??

25

