

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	dtcwt 0.5 documentation

The dtcwt library

This library provides support for computing 1D, 2D and 3D dual-tree complex
wavelet transforms and their inverse in Python. The interface is simple and
easy to use. As a quick example, a 1D DT-CWT can be performed from the Python
console in a single line:

>>> import dtcwt
>>> Yl, Yh = dtcwt.dtwavexfm([1,2,3,4], nlevels=3) # 3 levels, default wavelets

The interface is intentionally similar to the existing MATLAB dual-tree complex
wavelet transform toolbox provided by Prof. Nick Kingsbury [http://www-sigproc.eng.cam.ac.uk/~ngk/]. This library is intended to ease
the porting of algorithms written using the original MATLAB toolbox to Python.

Features of note

The features of the dtcwt library are:

	1D, 2D and 3D forward and inverse Dual-tree Complex Wavelet Transform
implementations.

	API similarity with the DTCW MATLAB toolbox.

	Automatic selection of single versus double precision calculation.

	Built-in support for the most common complex wavelet families.

Installation

The easiest way to install dtcwt is via easy_install or pip:

$ pip install dtcwt

If you want to check out the latest in-development version, look at
the project’s GitHub page [https://github.com/rjw57/dtcwt]. Once checked out,
installation is based on setuptools and follows the usual conventions for a
Python project:

$ python setup.py install

(Although the develop command may be more useful if you intend to perform any
significant modification to the library.) A test suite is provided so that you
may verify the code works on your system:

$ python setup.py nosetests

This will also write test-coverage information to the cover/ directory.

Further documentation

There is more documentation [https://dtcwt.readthedocs.org/]
available online and you can build your own copy via the Sphinx documentation
system:

$ python setup.py build_sphinx

Compiled documentation may be found in build/docs/html/.

Licence

The original toolbox is copyrighted and there are some restrictions on use
which are outlined in the file
ORIGINAL_README.txt.
Aside from portions directly derived from the original MATLAB toolbox, any
additions in this library and this documentation are licensed under the
2-clause BSD licence as documented in the file
COPYING.txt.

Contents

	Getting Started

	Example scripts

	API Reference

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.5

 	0.4.2

 	0.3

 	0.2.1

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dtcwt 0.5 documentation

Getting Started

This section will guide you through using the dtcwt library. Once
installed, you are most likely to use one of these functions:

	dtcwt.dtwavexfm() – 1D DT-CWT transform.

	dtcwt.dtwaveifm() – Inverse 1D DT-CWT transform.

	dtcwt.dtwavexfm2() – 2D DT-CWT transform.

	dtcwt.dtwaveifm2() – Inverse 2D DT-CWT transform.

	dtcwt.dtwavexfm3() – 3D DT-CWT transform.

	dtcwt.dtwaveifm3() – Inverse 3D DT-CWT transform.

See API Reference for full details on how to call these functions. We shall
present some simple usage below.

1D transform

This example generates two 1D random walks and demonstrates reconstructing them
using the forward and inverse 1D transforms. Note that
dtcwt.dtwavexfm() and dtcwt.dtwaveifm() will transform
columns of an input array independently:

import numpy as np
from matplotlib.pyplot import *

Generate a 300x2 array of a random walk
vecs = np.cumsum(np.random.rand(300,2) - 0.5, 0)

Show input
figure(1)
plot(vecs)
title('Input')

import dtcwt

1D transform
Yl, Yh = dtcwt.dtwavexfm(vecs)

Inverse
vecs_recon = dtcwt.dtwaveifm(Yl, Yh)

Show output
figure(2)
plot(vecs_recon)
title('Output')

Show error
figure(3)
plot(vecs_recon - vecs)
title('Reconstruction error')

print('Maximum reconstruction error: {0}'.format(np.max(np.abs(vecs - vecs_recon))))

show()

2D transform

Using the pylab environment (part of matplotlib) we can perform a simple
example where we transform the standard ‘Lena’ image and show the level 2
wavelet coefficients:

Load the Lena image from the Internet into a StringIO object
from StringIO import StringIO
from urllib2 import urlopen
LENA_URL = 'http://www.ece.rice.edu/~wakin/images/lena512.pgm'
lena_file = StringIO(urlopen(LENA_URL).read())

Parse the lena file and rescale to be in the range (0,1]
from scipy.misc import imread
lena = imread(lena_file) / 255.0

from matplotlib.pyplot import *
import numpy as np

Show lena on the left
figure(1)
imshow(lena, cmap=cm.gray, clim=(0,1))

import dtcwt

Compute two levels of dtcwt with the defaul wavelet family
Yh, Yl = dtcwt.dtwavexfm2(lena, 2)

Show the absolute images for each direction in level 2.
Note that the 2nd level has index 1 since the 1st has index 0.
figure(2)
for slice_idx in xrange(Yl[1].shape[2]):
 subplot(2, 3, slice_idx)
 imshow(np.abs(Yl[1][:,:,slice_idx]), cmap=cm.spectral, clim=(0, 1))

Show the phase images for each direction in level 2.
figure(3)
for slice_idx in xrange(Yl[1].shape[2]):
 subplot(2, 3, slice_idx)
 imshow(np.angle(Yl[1][:,:,slice_idx]), cmap=cm.hsv, clim=(-np.pi, np.pi))

show()

If the library is correctly installed and you also have matplotlib installed,
you should see these three figures:

[image: _images/lena-1.png]

[image: _images/lena-2.png]

[image: _images/lena-3.png]

3D transform

In the examples below I assume you’ve imported pyplot and numpy and, of course,
the dtcwt library itself:

import numpy as np
from matplotlib.pyplot import *
from dtcwt import *

We can demonstrate the 3D transform by generating a 64x64x64 array which
contains the image of a sphere:

GRID_SIZE = 64
SPHERE_RAD = int(0.45 * GRID_SIZE) + 0.5

grid = np.arange(-(GRID_SIZE>>1), GRID_SIZE>>1)
X, Y, Z = np.meshgrid(grid, grid, grid)
r = np.sqrt(X*X + Y*Y + Z*Z)

sphere = 0.5 + 0.5 * np.clip(SPHERE_RAD-r, -1, 1)

If we look at the central slice of this image, it looks like a circle:

imshow(sphere[:,:,GRID_SIZE>>1], interpolation='none', cmap=cm.gray)

[image: _images/sphere-slice.png]

Performing the 3 level DT-CWT with the defaul wavelet selection is easy:

Yl, Yh = dtwavexfm3(sphere, 3)

The function returns the lowest level low pass image and a tuple of complex
subband coefficients:

>>> print(Yl.shape)
(16, 16, 16)
>>> for subbands in Yh:
... print(subbands.shape)
(32, 32, 32, 28)
(16, 16, 16, 28)
(8, 8, 8, 28)

Performing the inverse transform should result in perfect reconstruction:

>>> Z = dtwaveifm3(Yl, Yh)
>>> print(np.abs(Z - ellipsoid).max()) # Should be < 1e-12
8.881784197e-15

If you plot the locations of the large complex coefficients, you can see the
directional sensitivity of the transform:

from mpl_toolkits.mplot3d import Axes3D

figure(figsize=(16,16))
nplts = Yh[-1].shape[3]
nrows = np.ceil(np.sqrt(nplts))
ncols = np.ceil(nplts / nrows)
W = np.max(Yh[-1].shape[:3])
for idx in xrange(Yh[-1].shape[3]):
 C = np.abs(Yh[-1][:,:,:,idx])
 ax = gcf().add_subplot(nrows, ncols, idx+1, projection='3d')
 ax.set_aspect('equal')
 good = C > 0.2*C.max()
 x,y,z = np.nonzero(good)
 ax.scatter(x, y, z, c=C[good].ravel())
 ax.auto_scale_xyz((0,W), (0,W), (0,W))

tight_layout()

For a further directional sensitivity example, see Showing 3D Directional Sensitivity.

[image: _images/3d-complex-coeffs.png]

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.5

 	0.4.2

 	0.3

 	0.2.1

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dtcwt 0.5 documentation

Example scripts

Showing 3D Directional Sensitivity

The
3d_dtcwt_directionality.py
script in the examples directory shows how one may demonstrate the directional
sensitivity of the 3D DT-CWT complex subband coefficients. It computes
empirically the maximally sensitive directions for each subband and plots them
in an interactive figure using matplotlib. A screenshot is reproduced below:

[image: _images/3d_dtcwt_directionality.png]
There are some points to note about this diagram. Each subband is labeled sich
that ‘1’ refers to the first subband, ‘5’ the fifth and so forth. On this
diagram the subbands are all four apart reflecting the fact that, for example,
subbands 2, 3 and 4 are positioned in the other four quadrants of the upper
hemisphere reflecting the position of subband 1. There are seven visible
subband directions in the +ve quadrant of the hemisphere and hence there are 28
directions in total over all four quadrants.

The source for the script is shown below:

#!/bin/python

"""
An example of the directional selectivity of 3D DT-CWT coefficients.

This example creates a 3D array holding an image of a sphere and performs the
3D DT-CWT transform on it. The locations of maxima (and their images about the
mid-point of the image) are determined for each complex coefficient at level 2.
These maxima points are then shown on a single plot to demonstrate the
directions in which the 3D DT-CWT transform is selective.

"""

Import the libraries we need
from matplotlib.pyplot import *
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from dtcwt import dtwavexfm3, dtwaveifm3, biort, qshift

Specify details about sphere and grid size
GRID_SIZE = 128
SPHERE_RAD = 0.33 * GRID_SIZE

Compute an image of the sphere
grid = np.arange(-(GRID_SIZE>>1), GRID_SIZE>>1)
X, Y, Z = np.meshgrid(grid, grid, grid)
r = np.sqrt(X*X + Y*Y + Z*Z)
sphere = 0.5 + np.clip(SPHERE_RAD-r, -0.5, 0.5)

Specify number of levels and wavelet family to use
nlevels = 2
b = biort('near_sym_a')
q = qshift('qshift_a')

Form the DT-CWT of the sphere
Yl, Yh = dtwavexfm3(sphere, nlevels, b, q)

Plot maxima
figure(figsize=(8,8))

ax = gcf().add_subplot(1,1,1, projection='3d')
ax.set_aspect('equal')
ax.view_init(35, 75)

Plot unit sphere +ve octant
thetas = np.linspace(0, np.pi/2, 10)
phis = np.linspace(0, np.pi/2, 10)

def sphere_to_xyz(r, theta, phi):
 st, ct = np.sin(theta), np.cos(theta)
 sp, cp = np.sin(phi), np.cos(phi)
 return r * np.asarray((st*cp, st*sp, ct))

tris = []
rad = 0.99 # so that points plotted latter are not z-clipped
for t1, t2 in zip(thetas[:-1], thetas[1:]):
 for p1, p2 in zip(phis[:-1], phis[1:]):
 tris.append([
 sphere_to_xyz(rad, t1, p1),
 sphere_to_xyz(rad, t1, p2),
 sphere_to_xyz(rad, t2, p2),
 sphere_to_xyz(rad, t2, p1),
])

sphere = Poly3DCollection(tris, facecolor='w', edgecolor=(0.6,0.6,0.6))
ax.add_collection3d(sphere)

locs = []
scale = 1.1
for idx in xrange(Yh[-1].shape[3]):
 Z = Yh[-1][:,:,:,idx]
 C = np.abs(Z)
 max_loc = np.asarray(np.unravel_index(np.argmax(C), C.shape)) - np.asarray(C.shape)*0.5
 max_loc /= np.sqrt(np.sum(max_loc * max_loc))

 # Only record directions in the +ve octant (or those from the -ve quadrant
 # which can be flipped).
 if np.all(np.sign(max_loc) == 1):
 locs.append(max_loc)
 ax.text(max_loc[0] * scale, max_loc[1] * scale, max_loc[2] * scale, str(idx+1))
 elif np.all(np.sign(max_loc) == -1):
 locs.append(-max_loc)
 ax.text(-max_loc[0] * scale, -max_loc[1] * scale, -max_loc[2] * scale, str(idx+1))

Plot all directions as a scatter plot
locs = np.asarray(locs)
ax.scatter(locs[:,0], locs[:,1], locs[:,2], c=np.arange(locs.shape[0]))

w = 1.1
ax.auto_scale_xyz([0, w], [0, w], [0, w])

legend()
title('3D DT-CWT subband directions for +ve hemisphere quadrant')
tight_layout()

show()

vim:sw=4:sts=4:et

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.5

 	0.4.2

 	0.3

 	0.2.1

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	dtcwt 0.5 documentation

API Reference

Computing the DT-CWT

	
dtcwt.dtwavexfm(X, nlevels=3, biort='near_sym_a', qshift='qshift_a', include_scale=False)

	Perform a n-level DTCWT decompostion on a 1D column vector X (or on
the columns of a matrix X).

	Parameters:	
	X – 1D real array or 2D real array whose columns are to be transformed

	nlevels – Number of levels of wavelet decomposition

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	Returns Yl:	The real lowpass image from the final level

	Returns Yh:	A tuple containing the (N, M, 6) shape complex highpass subimages for each level.

	Returns Yscale:	If include_scale is True, a tuple containing real lowpass coefficients for every scale.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 5-level transform on the real image X using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm(X,5,'near_sym_b','qshift_b')

	
dtcwt.dtwaveifm(Yl, Yh, biort='near_sym_a', qshift='qshift_a', gain_mask=None)

	Perform an n-level dual-tree complex wavelet (DTCWT) 1D
reconstruction.

	Parameters:	
	Yl – The real lowpass subband from the final level

	Yh – A sequence containing the complex highpass subband for each level.

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	gain_mask – Gain to be applied to each subband.

	Returns Z:	Reconstructed real array.

The l-th element of gain_mask is gain for wavelet subband at level l.
If gain_mask[l] == 0, no computation is performed for band l. Default
gain_mask is all ones. Note that l is 0-indexed.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a reconstruction from Yl,Yh using the 13,19-tap filters
for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm(Yl, Yh, 'near_sym_b', 'qshift_b')

	
dtcwt.dtwavexfm2(X, nlevels=3, biort='near_sym_a', qshift='qshift_a', include_scale=False)

	Perform a n-level DTCWT-2D decompostion on a 2D matrix X.

	Parameters:	
	X – 2D real array

	nlevels – Number of levels of wavelet decomposition

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	Returns Yl:	The real lowpass image from the final level

	Returns Yh:	A tuple containing the complex highpass subimages for each level.

	Returns Yscale:	If include_scale is True, a tuple containing real lowpass coefficients for every scale.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 3-level transform on the real image X using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm2(X, 3, 'near_sym_b', 'qshift_b')

	
dtcwt.dtwaveifm2(Yl, Yh, biort='near_sym_a', qshift='qshift_a', gain_mask=None)

	Perform an n-level dual-tree complex wavelet (DTCWT) 2D
reconstruction.

	Parameters:	
	Yl – The real lowpass subband from the final level

	Yh – A sequence containing the complex highpass subband for each level.

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	gain_mask – Gain to be applied to each subband.

	Returns Z:	Reconstructed real array

The (d, l)-th element of gain_mask is gain for subband with direction
d at level l. If gain_mask[d,l] == 0, no computation is performed for
band (d,l). Default gain_mask is all ones. Note that both d and l are
zero-indexed.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 3-level reconstruction from Yl,Yh using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm2(Yl, Yh, 'near_sym_b', 'qshift_b')

	
dtcwt.dtwavexfm3(X, nlevels=3, biort='near_sym_a', qshift='qshift_a', ext_mode=4)

	Perform a n-level DTCWT-3D decompostion on a 3D matrix X.

	Parameters:	
	X – 3D real array-like object

	nlevels – Number of levels of wavelet decomposition

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	ext_mode – Extension mode. See below.

	Returns Yl:	The real lowpass image from the final level

	Returns Yh:	A tuple containing the complex highpass subimages for each level.

Each element of Yh is a 4D complex array with the 4th dimension having
size 28. The 3D slice Yh[l][:,:,:,d] corresponds to the complex higpass
coefficients for direction d at level l where d and l are both 0-indexed.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

There are two values for ext_mode, either 4 or 8. If ext_mode = 4,
check whether 1st level is divisible by 2 (if not we raise a
ValueError). Also check whether from 2nd level onwards, the coefs can
be divided by 4. If any dimension size is not a multiple of 4, append extra
coefs by repeating the edges. If ext_mode = 8, check whether 1st level is
divisible by 4 (if not we raise a ValueError). Also check whether from
2nd level onwards, the coeffs can be divided by 8. If any dimension size is
not a multiple of 8, append extra coeffs by repeating the edges twice.

Example:

Performs a 3-level transform on the real 3D array X using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm3(X, 3, 'near_sym_b', 'qshift_b')

	
dtcwt.dtwaveifm3(Yl, Yh, biort='near_sym_a', qshift='qshift_a', ext_mode=4)

	Perform an n-level dual-tree complex wavelet (DTCWT) 3D
reconstruction.

	Parameters:	
	Yl – The real lowpass subband from the final level

	Yh – A sequence containing the complex highpass subband for each level.

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	ext_mode – Extension mode. See below.

	Returns Z:	Reconstructed real image matrix.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

There are two values for ext_mode, either 4 or 8. If ext_mode = 4,
check whether 1st level is divisible by 2 (if not we raise a
ValueError). Also check whether from 2nd level onwards, the coefs can
be divided by 4. If any dimension size is not a multiple of 4, append extra
coefs by repeating the edges. If ext_mode = 8, check whether 1st level is
divisible by 4 (if not we raise a ValueError). Also check whether from
2nd level onwards, the coeffs can be divided by 8. If any dimension size is
not a multiple of 8, append extra coeffs by repeating the edges twice.

Example:

Performs a 3-level reconstruction from Yl,Yh using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm3(Yl, Yh, 'near_sym_b', 'qshift_b')

	
dtcwt.biort(name)

	Load level 1 wavelet by name.

	Parameters:	name – a string specifying the wavelet family name

	Returns:	a tuple of vectors giving filter coefficients

	Name
	Wavelet

	antonini
	Antonini 9,7 tap filters.

	legall
	LeGall 5,3 tap filters.

	near_sym_a
	Near-Symmetric 5,7 tap filters.

	near_sym_b
	Near-Symmetric 13,19 tap filters.

Return a tuple whose elements are a vector specifying the h0o, g0o, h1o and
g1o coefficients.

	Raises:	
	IOError – if name does not correspond to a set of wavelets known to the library.

	ValueError – if name specifies a qshift() wavelet.

	
dtcwt.qshift(name)

	Load level >=2 wavelet by name,

	Parameters:	name – a string specifying the wavelet family name

	Returns:	a tuple of vectors giving filter coefficients

	Name
	Wavelet

	qshift_06
	Quarter Sample Shift Orthogonal (Q-Shift) 10,10 tap filters,
(only 6,6 non-zero taps).

	qshift_a
	Q-shift 10,10 tap filters,
(with 10,10 non-zero taps, unlike qshift_06).

	qshift_b
	Q-Shift 14,14 tap filters.

	qshift_c
	Q-Shift 16,16 tap filters.

	qshift_d
	Q-Shift 18,18 tap filters.

Return a tuple whose elements are a vector specifying the h0a, h0b, g0a,
g0b, h1a, h1b, g1a and g1b coefficients.

	Raises:	
	IOError – if name does not correspond to a set of wavelets known to the library.

	ValueError – if name specifies a biort() wavelet.

Low-level support functions

A normal user should not need to call these functions but they are documented
here just in case you do.

	
dtcwt.lowlevel.appropriate_complex_type_for(X)

	Return an appropriate complex data type depending on the type of X. If X
is already complex, return that, if it is floating point return a complex
type of the appropriate size and if it is integer, choose an complex
floating point type depending on the result of numpy.asfarray().

	
dtcwt.lowlevel.as_column_vector(v)

	Return v as a column vector with shape (N,1).

	
dtcwt.lowlevel.asfarray(X)

	Similar to numpy.asfarray() except that this function tries to
preserve the original datatype of X if it is already a floating point type
and will pass floating point arrays through directly without copying.

	
dtcwt.lowlevel.coldfilt(X, ha, hb)

	Filter the columns of image X using the two filters ha and hb =
reverse(ha). ha operates on the odd samples of X and hb on the even
samples. Both filters should be even length, and h should be approx linear
phase with a quarter sample advance from its mid pt (i.e. \(|h(m/2)| >
|h(m/2 + 1)|\)).

 ext top edge bottom edge ext
Level 1: ! | ! | !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a
Level 2: ! | ! | !
+q filt on x b b a a a a b b
-q filt on o a a b b b b a a

The output is decimated by two from the input sample rate and the results
from the two filters, Ya and Yb, are interleaved to give Y. Symmetric
extension with repeated end samples is used on the composite X columns
before each filter is applied.

Raises ValueError if the number of rows in X is not a multiple of 4, the
length of ha does not match hb or the lengths of ha or hb are non-even.

	
dtcwt.lowlevel.colfilter(X, h)

	Filter the columns of image X using filter vector h, without decimation.
If len(h) is odd, each output sample is aligned with each input sample
and Y is the same size as X. If len(h) is even, each output sample is
aligned with the mid point of each pair of input samples, and Y.shape =
X.shape + [1 0].

	Parameters:	
	X – an image whose columns are to be filtered

	h – the filter coefficients.

	Returns Y:	the filtered image.

	
dtcwt.lowlevel.colifilt(X, ha, hb)

	Filter the columns of image X using the two filters ha and hb =
reverse(ha). ha operates on the odd samples of X and hb on the even
samples. Both filters should be even length, and h should be approx linear
phase with a quarter sample advance from its mid pt (i.e :math:`|h(m/2)| >
|h(m/2 + 1)|).

 ext left edge right edge ext
Level 2: ! | ! | !
+q filt on x b b a a a a b b
-q filt on o a a b b b b a a
Level 1: ! | ! | !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a

The output is interpolated by two from the input sample rate and the
results from the two filters, Ya and Yb, are interleaved to give Y.
Symmetric extension with repeated end samples is used on the composite X
columns before each filter is applied.

	
dtcwt.lowlevel.reflect(x, minx, maxx)

	Reflect the values in matrix x about the scalar values minx and
maxx. Hence a vector x containing a long linearly increasing series is
converted into a waveform which ramps linearly up and down between minx and
maxx. If x contains integers and minx and maxx are (integers + 0.5), the
ramps will have repeated max and min samples.

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.5

 	0.4.2

 	0.3

 	0.2.1

 Navigation

 	
 index

 	
 modules |

 	dtcwt 0.5 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 dtcwt	

 	
 	
 dtcwt.lowlevel	

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.5

 	0.4.2

 	0.3

 	0.2.1

 Navigation

 	
 index

 	
 modules |

 	dtcwt 0.5 documentation

Index

 A
 | B
 | C
 | D
 | Q
 | R

A

 	

 	appropriate_complex_type_for() (in module dtcwt.lowlevel)

 	as_column_vector() (in module dtcwt.lowlevel)

 	

 	asfarray() (in module dtcwt.lowlevel)

B

 	

 	biort() (in module dtcwt)

C

 	

 	coldfilt() (in module dtcwt.lowlevel)

 	colfilter() (in module dtcwt.lowlevel)

 	

 	colifilt() (in module dtcwt.lowlevel)

D

 	

 	dtcwt (module)

 	dtcwt.lowlevel (module)

 	dtwaveifm() (in module dtcwt)

 	dtwaveifm2() (in module dtcwt)

 	

 	dtwaveifm3() (in module dtcwt)

 	dtwavexfm() (in module dtcwt)

 	dtwavexfm2() (in module dtcwt)

 	dtwavexfm3() (in module dtcwt)

Q

 	

 	qshift() (in module dtcwt)

R

 	

 	reflect() (in module dtcwt.lowlevel)

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.5

 	0.4.2

 	0.3

 	0.2.1

 _images/lena-1.png

_static/minus.png

_static/comment-bright.png

_images/3d_dtcwt_directionality.png
3D DT-CWT subband directions for +ve hemisphere quadrant

12 4

1.0 1

0.8

search.html

 Navigation

 		
 index

 		
 modules |

 		dtcwt 0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.5

 		0.4.2

 		0.3

 		0.2.1

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_images/lena-2.png
0 20 40 60 80100120

0 20

0 60 80100120

O 20 40 60 80100120

0
20
40
60
80

100

A
? 120

0 20 4 60 80 100120

020 40 60 80100120

0 20 40 60 80100120

_images/3d-complex-coeffs.png

_images/lena-3.png
20
40
60
80
100
120

100
120

; i d120 &
0 20 40 60 80100120 0 20 40 60

s

L Ao 2 5
80100120 0 20 40 60 80100120

_images/sphere-slice.png
1

2

B

_static/down-pressed.png

