Multiple Backend Support

The dtcwt library currently provides two backends for computing the wavelet transform: a NumPy based implementation and an OpenCL implementation which uses the PyOpenCL bindings for Python.

Which backend should I use?

The top-level transform routines, such as dtcwt.dtwavexfm2(), will automatically use the NumPy backend. If you are not primarily focussed on speed, this is the correct choice since the NumPy backend has the fullest feature support, is the best tested and behaves correctly given single- and double-precision input.

If you care about speed and need only single-precision calculations, the OpenCL backend can provide significant speed-up. On the author’s system, the 2D transform sees around a times 10 speed improvement.

Using a backend

The NumPy and OpenCL backends live in the dtcwt.backend.backend_numpy and dtcwt.backend.backend_opencl modules respectively. Both provide the same base API as defined in dtcwt.backend.base.

Access to the 2D transform is via a Transform2d instance. For example, to compute the 2D DT-CWT of the 2D real array in X:

>>> from dtcwt.backend.backend_numpy import Transform2d
>>> trans = Transform2d()           # You may optionally specify which wavelets to use here
>>> Y = trans.forward(X, nlevels=4) # Perform a 4-level transform of X
>>> imshow(Y.lowpass)               # Show coarsest scale low-pass image
>>> imshow(Y.subbands[-1][:,:,0])   # Show first coarsest scale subband

In this case Y is an instance of a class which behaves like dtcwt.backend.base.TransformDomainSignal. Backends are free to return whatever result they like as long as the result can be used like this base class. (For example, the OpenCL backend returns a dtcwt.backend.backend_opencl.TransformDomainSignal instance which keeps the device-side results available.)

Read the Docs v: 0.7
Versions
latest
0.7
0.6
0.5
0.4.2
0.3
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.