

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	dtcwt 0.7 documentation

The dtcwt library

This library provides support for computing 1D, 2D and 3D dual-tree complex
wavelet transforms and their inverse in Python. The interface is simple and
easy to use. As a quick example, a 1D DT-CWT can be performed from the Python
console in a single line:

>>> import dtcwt
>>> Yl, Yh = dtcwt.dtwavexfm([1,2,3,4], nlevels=3) # 3 levels, default wavelets

The interface is intentionally similar to the existing MATLAB dual-tree complex
wavelet transform toolbox provided by Prof. Nick Kingsbury [http://www-sigproc.eng.cam.ac.uk/~ngk/]. This library is intended to ease
the porting of algorithms written using the original MATLAB toolbox to Python.

The library also includes an OpenCL-based implementation of the wavelet
transform which can accelerate computation even on CPU-only devices.

Features of note

The features of the dtcwt library are:

	1D, 2D and 3D forward and inverse Dual-tree Complex Wavelet Transform
implementations.

	API similarity with the DTCWT MATLAB toolbox.

	Automatic selection of single versus double precision calculation.

	Built-in support for the most common complex wavelet families.

Contents

	Getting Started

	Variant transforms

	Multiple Backend Support

	Example scripts

	API Reference

Licence

The original toolbox is copyrighted and there are some restrictions on use
which are outlined in the file
ORIGINAL_README.txt.
Aside from portions directly derived from the original MATLAB toolbox, any
additions in this library and this documentation are licensed under the
2-clause BSD licence as documented in the file
COPYING.txt.

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dtcwt 0.7 documentation

Getting Started

This section will guide you through using the dtcwt library. Once
installed, you are most likely to use one of these functions:

	dtcwt.dtwavexfm() – 1D DT-CWT transform.

	dtcwt.dtwaveifm() – Inverse 1D DT-CWT transform.

	dtcwt.dtwavexfm2() – 2D DT-CWT transform.

	dtcwt.dtwaveifm2() – Inverse 2D DT-CWT transform.

	dtcwt.dtwavexfm3() – 3D DT-CWT transform.

	dtcwt.dtwaveifm3() – Inverse 3D DT-CWT transform.

See API Reference for full details on how to call these functions. We shall
present some simple usage below.

Installation

The easiest way to install dtcwt is via easy_install or pip:

$ pip install dtcwt

If you want to check out the latest in-development version, look at
the project’s GitHub page [https://github.com/rjw57/dtcwt]. Once checked out,
installation is based on setuptools and follows the usual conventions for a
Python project:

$ python setup.py install

(Although the develop command may be more useful if you intend to perform any
significant modification to the library.) A test suite is provided so that you
may verify the code works on your system:

$ python setup.py nosetests

This will also write test-coverage information to the cover/ directory.

Building the documentation

There is a pre-built [https://dtcwt.readthedocs.org/] version of this
documentation available online and you can build your own copy via the Sphinx
documentation system:

$ python setup.py build_sphinx

Compiled documentation may be found in build/docs/html/.

1D transform

This example generates two 1D random walks and demonstrates reconstructing them
using the forward and inverse 1D transforms. Note that
dtcwt.dtwavexfm() and dtcwt.dtwaveifm() will transform
columns of an input array independently:

import numpy as np
from matplotlib.pyplot import *

Generate a 300x2 array of a random walk
vecs = np.cumsum(np.random.rand(300,2) - 0.5, 0)

Show input
figure(1)
plot(vecs)
title('Input')

import dtcwt

1D transform
Yl, Yh = dtcwt.dtwavexfm(vecs)

Inverse
vecs_recon = dtcwt.dtwaveifm(Yl, Yh)

Show output
figure(2)
plot(vecs_recon)
title('Output')

Show error
figure(3)
plot(vecs_recon - vecs)
title('Reconstruction error')

print('Maximum reconstruction error: {0}'.format(np.max(np.abs(vecs - vecs_recon))))

show()

2D transform

Using the pylab environment (part of matplotlib) we can perform a simple
example where we transform the standard ‘Lena’ image and show the level 2
wavelet coefficients:

Load the Lena image from the Internet into a StringIO object
from StringIO import StringIO
from urllib2 import urlopen
LENA_URL = 'http://www.ece.rice.edu/~wakin/images/lena512.pgm'
lena_file = StringIO(urlopen(LENA_URL).read())

Parse the lena file and rescale to be in the range (0,1]
from scipy.misc import imread
lena = imread(lena_file) / 255.0

from matplotlib.pyplot import *
import numpy as np

Show lena on the left
figure(1)
imshow(lena, cmap=cm.gray, clim=(0,1))

import dtcwt

Compute two levels of dtcwt with the defaul wavelet family
Yh, Yl = dtcwt.dtwavexfm2(lena, 2)

Show the absolute images for each direction in level 2.
Note that the 2nd level has index 1 since the 1st has index 0.
figure(2)
for slice_idx in xrange(Yl[1].shape[2]):
 subplot(2, 3, slice_idx)
 imshow(np.abs(Yl[1][:,:,slice_idx]), cmap=cm.spectral, clim=(0, 1))

Show the phase images for each direction in level 2.
figure(3)
for slice_idx in xrange(Yl[1].shape[2]):
 subplot(2, 3, slice_idx)
 imshow(np.angle(Yl[1][:,:,slice_idx]), cmap=cm.hsv, clim=(-np.pi, np.pi))

show()

If the library is correctly installed and you also have matplotlib installed,
you should see these three figures:

[image: _images/lena-1.png]

[image: _images/lena-2.png]

[image: _images/lena-3.png]

3D transform

In the examples below I assume you’ve imported pyplot and numpy and, of course,
the dtcwt library itself:

import numpy as np
from matplotlib.pyplot import *
from dtcwt import *

We can demonstrate the 3D transform by generating a 64x64x64 array which
contains the image of a sphere:

GRID_SIZE = 64
SPHERE_RAD = int(0.45 * GRID_SIZE) + 0.5

grid = np.arange(-(GRID_SIZE>>1), GRID_SIZE>>1)
X, Y, Z = np.meshgrid(grid, grid, grid)
r = np.sqrt(X*X + Y*Y + Z*Z)

sphere = 0.5 + 0.5 * np.clip(SPHERE_RAD-r, -1, 1)

If we look at the central slice of this image, it looks like a circle:

imshow(sphere[:,:,GRID_SIZE>>1], interpolation='none', cmap=cm.gray)

[image: _images/sphere-slice.png]

Performing the 3 level DT-CWT with the defaul wavelet selection is easy:

Yl, Yh = dtwavexfm3(sphere, 3)

The function returns the lowest level low pass image and a tuple of complex
subband coefficients:

>>> print(Yl.shape)
(16, 16, 16)
>>> for subbands in Yh:
... print(subbands.shape)
(32, 32, 32, 28)
(16, 16, 16, 28)
(8, 8, 8, 28)

Performing the inverse transform should result in perfect reconstruction:

>>> Z = dtwaveifm3(Yl, Yh)
>>> print(np.abs(Z - ellipsoid).max()) # Should be < 1e-12
8.881784197e-15

If you plot the locations of the large complex coefficients, you can see the
directional sensitivity of the transform:

from mpl_toolkits.mplot3d import Axes3D

figure(figsize=(16,16))
nplts = Yh[-1].shape[3]
nrows = np.ceil(np.sqrt(nplts))
ncols = np.ceil(nplts / nrows)
W = np.max(Yh[-1].shape[:3])
for idx in xrange(Yh[-1].shape[3]):
 C = np.abs(Yh[-1][:,:,:,idx])
 ax = gcf().add_subplot(nrows, ncols, idx+1, projection='3d')
 ax.set_aspect('equal')
 good = C > 0.2*C.max()
 x,y,z = np.nonzero(good)
 ax.scatter(x, y, z, c=C[good].ravel())
 ax.auto_scale_xyz((0,W), (0,W), (0,W))

tight_layout()

For a further directional sensitivity example, see Showing 3D Directional Sensitivity.

[image: _images/3d-complex-coeffs.png]

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dtcwt 0.7 documentation

Variant transforms

In addition to the basic 1, 2 and 3 dimensional DT-CWT, this library also
supports a selection of variant transforms.

Rotational symmetry modified wavelet transform

For some applications, one may prefer the subband responses to be more rotationally similar.

In the original 2-D DTCWT, the 45 and 135 degree subbands have passbands whose centre frequencies
are somewhat further from the origin than those of the other four subbands. This results from
the combination of two highpass 1-D wavelet filters to produce 2-D wavelets. The remaining
subbands combine highpass and lowpass 1-D filters, and hence their centre frequencies are a
factor of approximately sqrt(1.8) closer to the origin of the frequency plane.

The dtwavexfm2b() function employs an alternative bandpass 1-D filter in place of the highpass
filter for the appropriate subbands. The image below illustrates the relevant differences in impulse
and frequency responses[1].

[image: _images/modified_wavelets.png]

Usage is very similar to the standard 2-D transform function, but the only supported parameters are
‘near_sym_b_bp’, ‘qshift_b_bp’. These arguments are optional, but it is best practice to include them
so that your intentions are clear (and because it is easier for others to spot than the difference
between 2() and 2b().

Yl, Yh = dtcwt.dtwavexfm2b(image, tfmlevel, 'near_sym_b_bp', 'qshift_b_bp')

While the Hilbert transform property of the DTCWT is preserved, perfect reconstruction is lost.
However, in applications such as machine vision, where all subsequent operations on the image
take place in the transform domain, this is of relatively minor importance.

For full details, refer to:

[1] N. G. Kingsbury. Rotation-invariant local feature matching with complex
wavelets. In Proc. European Conference on Signal Processing (EUSIPCO),
pages 901–904, 2006. 2, 18, 21

Example

Working on the Lena image, the standard 2-D DTCWT achieves perfect reconstruction:

Perform the standard 2-D DTCWT
Yl, Yh = dtcwt.dtwavexfm2(image, tfmlevel, 'near_sym_b', 'qshift_b')

Perform the inverse transform
Z = dtcwt.dtwaveifm2(Yl, Yh, biort='near_sym_b', qshift='qshift_b')

Show the error
imshow(Z-image, cmap=cm.gray)

[image: _images/lena_no_error.png]

The error signal appears to be just noise, which we can attribute to floating-point precision.

Using the modified wavelets yields the following result:

Perform the symmetry-modified 2-D DTCWT
Yl, Yh = dtcwt.dtwavexfm2b(image, tfmlevel, 'near_sym_b_bp', 'qshift_b_bp')

Perform the inverse transform
Z = dtcwt.dtwaveifm2b(Yl, Yh, biort='near_sym_b_bp', qshift='qshift_b_bp')

Show the error
imshow(Z-image, cmap=cm.gray)

[image: _images/lena_error.png]

As we would expect, the error is more significant, but only near 45 and 135 degree edge features.

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dtcwt 0.7 documentation

Multiple Backend Support

The dtcwt library currently provides two backends for computing the wavelet
transform: a NumPy [http://www.numpy.org/] based implementation and an OpenCL
implementation which uses the PyOpenCL [http://mathema.tician.de/software/pyopencl/]
bindings for Python.

Which backend should I use?

The top-level transform routines, such as dtcwt.dtwavexfm2(), will
automatically use the NumPy backend. If you are not primarily focussed on
speed, this is the correct choice since the NumPy backend has the fullest
feature support, is the best tested and behaves correctly given single- and
double-precision input.

If you care about speed and need only single-precision calculations, the OpenCL
backend can provide significant speed-up. On the author’s system, the 2D
transform sees around a times 10 speed improvement.

Using a backend

The NumPy and OpenCL backends live in the dtcwt.backend.backend_numpy
and dtcwt.backend.backend_opencl modules respectively. Both provide
the same base API as defined in dtcwt.backend.base.

Access to the 2D transform is via a Transform2d instance. For
example, to compute the 2D DT-CWT of the 2D real array in X:

>>> from dtcwt.backend.backend_numpy import Transform2d
>>> trans = Transform2d() # You may optionally specify which wavelets to use here
>>> Y = trans.forward(X, nlevels=4) # Perform a 4-level transform of X
>>> imshow(Y.lowpass) # Show coarsest scale low-pass image
>>> imshow(Y.subbands[-1][:,:,0]) # Show first coarsest scale subband

In this case Y is an instance of a class which behaves like
dtcwt.backend.base.TransformDomainSignal. Backends are free to
return whatever result they like as long as the result can be used like this
base class. (For example, the OpenCL backend returns a
dtcwt.backend.backend_opencl.TransformDomainSignal instance which
keeps the device-side results available.)

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	dtcwt 0.7 documentation

Example scripts

Showing 3D Directional Sensitivity

The
3d_dtcwt_directionality.py
script in the examples directory shows how one may demonstrate the directional
sensitivity of the 3D DT-CWT complex subband coefficients. It computes
empirically the maximally sensitive directions for each subband and plots them
in an interactive figure using matplotlib. A screenshot is reproduced below:

[image: _images/3d_dtcwt_directionality.png]
There are some points to note about this diagram. Each subband is labeled sich
that ‘1’ refers to the first subband, ‘5’ the fifth and so forth. On this
diagram the subbands are all four apart reflecting the fact that, for example,
subbands 2, 3 and 4 are positioned in the other four quadrants of the upper
hemisphere reflecting the position of subband 1. There are seven visible
subband directions in the +ve quadrant of the hemisphere and hence there are 28
directions in total over all four quadrants.

The source for the script is shown below:

#!/bin/python

"""
An example of the directional selectivity of 3D DT-CWT coefficients.

This example creates a 3D array holding an image of a sphere and performs the
3D DT-CWT transform on it. The locations of maxima (and their images about the
mid-point of the image) are determined for each complex coefficient at level 2.
These maxima points are then shown on a single plot to demonstrate the
directions in which the 3D DT-CWT transform is selective.

"""

Import the libraries we need
from matplotlib.pyplot import *
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
from dtcwt import dtwavexfm3, dtwaveifm3, biort, qshift

Specify details about sphere and grid size
GRID_SIZE = 128
SPHERE_RAD = int(0.45 * GRID_SIZE) + 0.5

Compute an image of the sphere
grid = np.arange(-(GRID_SIZE>>1), GRID_SIZE>>1)
X, Y, Z = np.meshgrid(grid, grid, grid)
r = np.sqrt(X*X + Y*Y + Z*Z)
sphere = (0.5 + np.clip(SPHERE_RAD-r, -0.5, 0.5)).astype(np.float32)

Specify number of levels and wavelet family to use
nlevels = 2
b = biort('near_sym_a')
q = qshift('qshift_a')

Form the DT-CWT of the sphere. We use discard_level_1 since we're
uninterested in the inverse transform and this saves us some memory.
Yl, Yh = dtwavexfm3(sphere, nlevels, b, q, discard_level_1=True)

Plot maxima
figure(figsize=(8,8))

ax = gcf().add_subplot(1,1,1, projection='3d')
ax.set_aspect('equal')
ax.view_init(35, 75)

Plot unit sphere +ve octant
thetas = np.linspace(0, np.pi/2, 10)
phis = np.linspace(0, np.pi/2, 10)

def sphere_to_xyz(r, theta, phi):
 st, ct = np.sin(theta), np.cos(theta)
 sp, cp = np.sin(phi), np.cos(phi)
 return r * np.asarray((st*cp, st*sp, ct))

tris = []
rad = 0.99 # so that points plotted latter are not z-clipped
for t1, t2 in zip(thetas[:-1], thetas[1:]):
 for p1, p2 in zip(phis[:-1], phis[1:]):
 tris.append([
 sphere_to_xyz(rad, t1, p1),
 sphere_to_xyz(rad, t1, p2),
 sphere_to_xyz(rad, t2, p2),
 sphere_to_xyz(rad, t2, p1),
])

sphere = Poly3DCollection(tris, facecolor='w', edgecolor=(0.6,0.6,0.6))
ax.add_collection3d(sphere)

locs = []
scale = 1.1
for idx in xrange(Yh[-1].shape[3]):
 Z = Yh[-1][:,:,:,idx]
 C = np.abs(Z)
 max_loc = np.asarray(np.unravel_index(np.argmax(C), C.shape)) - np.asarray(C.shape)*0.5
 max_loc /= np.sqrt(np.sum(max_loc * max_loc))

 # Only record directions in the +ve octant (or those from the -ve quadrant
 # which can be flipped).
 if np.all(np.sign(max_loc) == 1):
 locs.append(max_loc)
 ax.text(max_loc[0] * scale, max_loc[1] * scale, max_loc[2] * scale, str(idx+1))
 elif np.all(np.sign(max_loc) == -1):
 locs.append(-max_loc)
 ax.text(-max_loc[0] * scale, -max_loc[1] * scale, -max_loc[2] * scale, str(idx+1))

Plot all directions as a scatter plot
locs = np.asarray(locs)
ax.scatter(locs[:,0], locs[:,1], locs[:,2], c=np.arange(locs.shape[0]))

w = 1.1
ax.auto_scale_xyz([0, w], [0, w], [0, w])

legend()
title('3D DT-CWT subband directions for +ve hemisphere quadrant')
tight_layout()

show()

vim:sw=4:sts=4:et

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	dtcwt 0.7 documentation

API Reference

Computing the DT-CWT

These functions provide API-level compatibility with MATLAB.

Note

The functionality of dtwavexfm2b and dtwaveifm2b have been folded
into dtwavexfm2 and dtwaveifm2. For convenience of porting MATLAB
scripts, the original function names are available in the dtcwt
module as aliases but they should not be used in new code.

	
dtcwt.dtwavexfm(X, nlevels=3, biort='near_sym_a', qshift='qshift_a', include_scale=False)

	Perform a n-level DTCWT decompostion on a 1D column vector X (or on
the columns of a matrix X).

	Parameters:	
	X – 1D real array or 2D real array whose columns are to be transformed

	nlevels – Number of levels of wavelet decomposition

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	Returns Yl:	The real lowpass image from the final level

	Returns Yh:	A tuple containing the (N, M, 6) shape complex highpass subimages for each level.

	Returns Yscale:	If include_scale is True, a tuple containing real lowpass coefficients for every scale.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 5-level transform on the real image X using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm(X,5,'near_sym_b','qshift_b')

	
dtcwt.dtwaveifm(Yl, Yh, biort='near_sym_a', qshift='qshift_a', gain_mask=None)

	Perform an n-level dual-tree complex wavelet (DTCWT) 1D
reconstruction.

	Parameters:	
	Yl – The real lowpass subband from the final level

	Yh – A sequence containing the complex highpass subband for each level.

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	gain_mask – Gain to be applied to each subband.

	Returns Z:	Reconstructed real array.

The l-th element of gain_mask is gain for wavelet subband at level l.
If gain_mask[l] == 0, no computation is performed for band l. Default
gain_mask is all ones. Note that l is 0-indexed.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a reconstruction from Yl,Yh using the 13,19-tap filters
for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm(Yl, Yh, 'near_sym_b', 'qshift_b')

	
dtcwt.dtwavexfm2(X, nlevels=3, biort='near_sym_a', qshift='qshift_a', include_scale=False)

	Perform a n-level DTCWT-2D decompostion on a 2D matrix X.

	Parameters:	
	X – 2D real array

	nlevels – Number of levels of wavelet decomposition

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	Returns Yl:	The real lowpass image from the final level

	Returns Yh:	A tuple containing the complex highpass subimages for each level.

	Returns Yscale:	If include_scale is True, a tuple containing real lowpass coefficients for every scale.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 3-level transform on the real image X using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm2(X, 3, 'near_sym_b', 'qshift_b')

	
dtcwt.dtwaveifm2(Yl, Yh, biort='near_sym_a', qshift='qshift_a', gain_mask=None)

	Perform an n-level dual-tree complex wavelet (DTCWT) 2D
reconstruction.

	Parameters:	
	Yl – The real lowpass subband from the final level

	Yh – A sequence containing the complex highpass subband for each level.

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	gain_mask – Gain to be applied to each subband.

	Returns Z:	Reconstructed real array

The (d, l)-th element of gain_mask is gain for subband with direction
d at level l. If gain_mask[d,l] == 0, no computation is performed for
band (d,l). Default gain_mask is all ones. Note that both d and l are
zero-indexed.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 3-level reconstruction from Yl,Yh using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm2(Yl, Yh, 'near_sym_b', 'qshift_b')

	
dtcwt.dtwavexfm2b(X, nlevels=3, biort='near_sym_a', qshift='qshift_a', include_scale=False)

	Perform a n-level DTCWT-2D decompostion on a 2D matrix X.

	Parameters:	
	X – 2D real array

	nlevels – Number of levels of wavelet decomposition

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	Returns Yl:	The real lowpass image from the final level

	Returns Yh:	A tuple containing the complex highpass subimages for each level.

	Returns Yscale:	If include_scale is True, a tuple containing real lowpass coefficients for every scale.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 3-level transform on the real image X using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm2(X, 3, 'near_sym_b', 'qshift_b')

	
dtcwt.dtwaveifm2b(Yl, Yh, biort='near_sym_a', qshift='qshift_a', gain_mask=None)

	Perform an n-level dual-tree complex wavelet (DTCWT) 2D
reconstruction.

	Parameters:	
	Yl – The real lowpass subband from the final level

	Yh – A sequence containing the complex highpass subband for each level.

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	gain_mask – Gain to be applied to each subband.

	Returns Z:	Reconstructed real array

The (d, l)-th element of gain_mask is gain for subband with direction
d at level l. If gain_mask[d,l] == 0, no computation is performed for
band (d,l). Default gain_mask is all ones. Note that both d and l are
zero-indexed.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

Example:

Performs a 3-level reconstruction from Yl,Yh using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm2(Yl, Yh, 'near_sym_b', 'qshift_b')

	
dtcwt.dtwavexfm3(X, nlevels=3, biort='near_sym_a', qshift='qshift_a', ext_mode=4, discard_level_1=False)

	Perform a n-level DTCWT-3D decompostion on a 3D matrix X.

	Parameters:	
	X – 3D real array-like object

	nlevels – Number of levels of wavelet decomposition

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	ext_mode – Extension mode. See below.

	discard_level_1 – True if level 1 high-pass bands are to be discarded.

	Returns Yl:	The real lowpass image from the final level

	Returns Yh:	A tuple containing the complex highpass subimages for each level.

Each element of Yh is a 4D complex array with the 4th dimension having
size 28. The 3D slice Yh[l][:,:,:,d] corresponds to the complex higpass
coefficients for direction d at level l where d and l are both 0-indexed.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

There are two values for ext_mode, either 4 or 8. If ext_mode = 4,
check whether 1st level is divisible by 2 (if not we raise a
ValueError). Also check whether from 2nd level onwards, the coefs can
be divided by 4. If any dimension size is not a multiple of 4, append extra
coefs by repeating the edges. If ext_mode = 8, check whether 1st level is
divisible by 4 (if not we raise a ValueError). Also check whether from
2nd level onwards, the coeffs can be divided by 8. If any dimension size is
not a multiple of 8, append extra coeffs by repeating the edges twice.

If discard_level_1 is True the highpass coefficients at level 1 will be
discarded. (And, in fact, will never be calculated.) This turns the
transform from being 8:1 redundant to being 1:1 redundant at the cost of
no-longer allowing perfect reconstruction. If this option is selected then
Yh[0] will be None. Note that dtwaveifm3() will accepts
Yh[0] being None and will treat it as being zero.

Example:

Performs a 3-level transform on the real 3D array X using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Yl, Yh = dtwavexfm3(X, 3, 'near_sym_b', 'qshift_b')

	
dtcwt.dtwaveifm3(Yl, Yh, biort='near_sym_a', qshift='qshift_a', ext_mode=4)

	Perform an n-level dual-tree complex wavelet (DTCWT) 3D
reconstruction.

	Parameters:	
	Yl – The real lowpass subband from the final level

	Yh – A sequence containing the complex highpass subband for each level.

	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

	ext_mode – Extension mode. See below.

	Returns Z:	Reconstructed real image matrix.

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

There are two values for ext_mode, either 4 or 8. If ext_mode = 4,
check whether 1st level is divisible by 2 (if not we raise a
ValueError). Also check whether from 2nd level onwards, the coefs can
be divided by 4. If any dimension size is not a multiple of 4, append extra
coefs by repeating the edges. If ext_mode = 8, check whether 1st level is
divisible by 4 (if not we raise a ValueError). Also check whether from
2nd level onwards, the coeffs can be divided by 8. If any dimension size is
not a multiple of 8, append extra coeffs by repeating the edges twice.

Example:

Performs a 3-level reconstruction from Yl,Yh using the 13,19-tap
filters for level 1 and the Q-shift 14-tap filters for levels >= 2.
Z = dtwaveifm3(Yl, Yh, 'near_sym_b', 'qshift_b')

	
dtcwt.biort(name)

	Load level 1 wavelet by name.

	Parameters:	name – a string specifying the wavelet family name

	Returns:	a tuple of vectors giving filter coefficients

	Name
	Wavelet

	antonini
	Antonini 9,7 tap filters.

	legall
	LeGall 5,3 tap filters.

	near_sym_a
	Near-Symmetric 5,7 tap filters.

	near_sym_b
	Near-Symmetric 13,19 tap filters.

	near_sym_b_bp
	Near-Symmetric 13,19 tap filters + BP filter

Return a tuple whose elements are a vector specifying the h0o, g0o, h1o and
g1o coefficients.

See Rotational symmetry modified wavelet transform for an explanation of the near_sym_b_bp
wavelet filters.

	Raises:	
	IOError – if name does not correspond to a set of wavelets known to the library.

	ValueError – if name specifies a qshift() wavelet.

	
dtcwt.qshift(name)

	Load level >=2 wavelet by name,

	Parameters:	name – a string specifying the wavelet family name

	Returns:	a tuple of vectors giving filter coefficients

	Name
	Wavelet

	qshift_06
	Quarter Sample Shift Orthogonal (Q-Shift) 10,10 tap filters,
(only 6,6 non-zero taps).

	qshift_a
	Q-shift 10,10 tap filters,
(with 10,10 non-zero taps, unlike qshift_06).

	qshift_b
	Q-Shift 14,14 tap filters.

	qshift_c
	Q-Shift 16,16 tap filters.

	qshift_d
	Q-Shift 18,18 tap filters.

	qshift_b_bp
	Q-Shift 18,18 tap filters + BP

Return a tuple whose elements are a vector specifying the h0a, h0b, g0a,
g0b, h1a, h1b, g1a and g1b coefficients.

See Rotational symmetry modified wavelet transform for an explanation of the qshift_b_bp
wavelet filters.

	Raises:	
	IOError – if name does not correspond to a set of wavelets known to the library.

	ValueError – if name specifies a biort() wavelet.

Backends

Base classes

	
class dtcwt.backend.base.ReconstructedSignal(value)

	A representation of the reconstructed signal from the inverse transform. A
backend is free to implement their own version of this class providing it
corresponds to the interface documented.

	
value

	A NumPy-compatible array containing the reconstructed signal.

	
class dtcwt.backend.base.Transform2d(biort='near_sym_a', qshift='qshift_a')

	An implementation of a 2D DT-CWT transformation. Backends must provide a
transform class which provides an interface compatible with this base
class.

	Parameters:	
	biort – Level 1 wavelets to use. See biort().

	qshift – Level >= 2 wavelets to use. See qshift().

If biort or qshift are strings, they are used as an argument to the
biort() or qshift() functions. Otherwise, they are
interpreted as tuples of vectors giving filter coefficients. In the biort
case, this should be (h0o, g0o, h1o, g1o). In the qshift case, this should
be (h0a, h0b, g0a, g0b, h1a, h1b, g1a, g1b).

In some cases the tuples may have more elements. This is used to represent
the Rotational symmetry modified wavelet transform.

	
forward(X, nlevels=3, include_scale=False)

	Perform a n-level DTCWT-2D decompostion on a 2D matrix X.

	Parameters:	
	X – 2D real array

	nlevels – Number of levels of wavelet decomposition

	Returns:	A dtcwt.backend.TransformDomainSignal compatible object representing the transform-domain signal

	
inverse(td_signal, gain_mask=None)

	Perform an n-level dual-tree complex wavelet (DTCWT) 2D
reconstruction.

	Parameters:	
	td_signal – A dtcwt.backend.TransformDomainSignal-like class holding the transform domain representation to invert.

	gain_mask – Gain to be applied to each subband.

	Returns:	A dtcwt.backend.ReconstructedSignal compatible instance with the reconstruction.

The (d, l)-th element of gain_mask is gain for subband with direction
d at level l. If gain_mask[d,l] == 0, no computation is performed for
band (d,l). Default gain_mask is all ones. Note that both d and l are
zero-indexed.

	
class dtcwt.backend.base.TransformDomainSignal(lowpass, subbands, scales=None)

	A representation of a transform domain signal.

Backends are free to implement any class which respects this interface for
storing transform-domain signals. The inverse transform may accept a
backend-specific version of this class but should always accept any class
which corresponds to this interface.

	
lowpass

	A NumPy-compatible array containing the coarsest scale lowpass signal.

	
subbands

	A tuple where each element is the complex subband coefficients for
corresponding scales finest to coarsest.

	
scales

	(optional) A tuple where each element is a NumPy-compatible array
containing the lowpass signal for corresponding scales finest to
coarsest. This is not required for the inverse and may be None.

NumPy

A backend which uses NumPy to perform the filtering. This backend should always
be available.

	
class dtcwt.backend.backend_numpy.TransformDomainSignal(lowpass, subbands, scales=None)

	A representation of a transform domain signal.

Backends are free to implement any class which respects this interface for
storing transform-domain signals. The inverse transform may accept a
backend-specific version of this class but should always accept any class
which corresponds to this interface.

	
lowpass

	A NumPy-compatible array containing the coarsest scale lowpass signal.

	
subbands

	A tuple where each element is the complex subband coefficients for
corresponding scales finest to coarsest.

	
scales

	(optional) A tuple where each element is a NumPy-compatible array
containing the lowpass signal for corresponding scales finest to
coarsest. This is not required for the inverse and may be None.

	
class dtcwt.backend.backend_numpy.Transform2d(biort='near_sym_a', qshift='qshift_a')

	An implementation of the 2D DT-CWT via NumPy. biort and qshift are the
wavelets which parameterise the transform. Valid values are documented in
dtcwt.dtwavexfm2().

	
forward(X, nlevels=3, include_scale=False)

	Perform a n-level DTCWT-2D decompostion on a 2D matrix X.

	Parameters:	
	X – 2D real array

	nlevels – Number of levels of wavelet decomposition

	Returns:	A dtcwt.backend.TransformDomainSignal compatible object representing the transform-domain signal

	
inverse(td_signal, gain_mask=None)

	Perform an n-level dual-tree complex wavelet (DTCWT) 2D
reconstruction.

	Parameters:	
	td_signal – A dtcwt.backend.TransformDomainSignal-like class holding the transform domain representation to invert.

	gain_mask – Gain to be applied to each subband.

	Returns:	A dtcwt.backend.ReconstructedSignal compatible instance with the reconstruction.

The (d, l)-th element of gain_mask is gain for subband with direction
d at level l. If gain_mask[d,l] == 0, no computation is performed for
band (d,l). Default gain_mask is all ones. Note that both d and l are
zero-indexed.

OpenCL

Provide low-level OpenCL accelerated operations. This backend requires that
PyOpenCL be installed.

	
class dtcwt.backend.backend_opencl.TransformDomainSignal(lowpass, subbands, scales=None)

	An interface-compatible version of
dtcwt.backend.TransformDomainSignal where the initialiser
arguments are assumed to by pyopencl.array.Array instances.

The attributes defined in dtcwt.backend.TransformDomainSignal
are implemented via properties. The original OpenCL arrays may be accessed
via the cl_... attributes.

Note

The copy from device to host is performed once and then memoized.
This makes repeated access to the host-side attributes efficient but
will mean that any changes to the device-side arrays will not be
reflected in the host-side attributes after their first access. You
should not be modifying the arrays once you return an instance of this
class anyway but if you do, beware!

	
cl_lowpass

	The CL array containing the lowpass image.

	
cl_subbands

	A tuple of CL arrays containing the subband images.

	
cl_scales

	(optional) Either None or a tuple of lowpass images for each
scale.

	
class dtcwt.backend.backend_opencl.Transform2d(biort='near_sym_a', qshift='qshift_a', queue=None)

	An implementation of the 2D DT-CWT via OpenCL. biort and qshift are the
wavelets which parameterise the transform. Valid values are documented in
dtcwt.dtwavexfm2().

If queue is non-None it is an instance of
pyopencl.CommandQueue which is used to compile and execute the
OpenCL kernels which implement the transform. If it is None, the first
available compute device is used.

Note

At the moment only the forward transform is accelerated. The
inverse transform uses the NumPy backend.

	
forward(X, nlevels=3, include_scale=False)

	Perform a n-level DTCWT-2D decompostion on a 2D matrix X.

	Parameters:	
	X – 2D real array

	nlevels – Number of levels of wavelet decomposition

	Returns:	A dtcwt.backend.TransformDomainSignal compatible object representing the transform-domain signal

Note

X may be a pyopencl.array.Array instance which has
already been copied to the device. In which case, it must be 2D.
(I.e. a vector will not be auto-promoted.)

	
inverse(td_signal, gain_mask=None)

	Perform an n-level dual-tree complex wavelet (DTCWT) 2D
reconstruction.

	Parameters:	
	td_signal – A dtcwt.backend.TransformDomainSignal-like class holding the transform domain representation to invert.

	gain_mask – Gain to be applied to each subband.

	Returns:	A dtcwt.backend.ReconstructedSignal compatible instance with the reconstruction.

The (d, l)-th element of gain_mask is gain for subband with direction
d at level l. If gain_mask[d,l] == 0, no computation is performed for
band (d,l). Default gain_mask is all ones. Note that both d and l are
zero-indexed.

Keypoint analysis

	
dtcwt.keypoint.find_keypoints(highpass_subbands, method=None, alpha=1.0, beta=0.4, kappa=0.16666666666666666, threshold=None, max_points=None, upsample_keypoint_energy=None, upsample_subbands=None, refine_positions=True, skip_levels=1)

	

	Parameters:	
	highpass_subbands – (NxMx6) matrix of highpass subband images

	method – (optional) string specifying which keypoint energy method to use

	alpha – (optional) scale parameter for 'fauqueur' method

	beta – (optional) shape parameter for 'fauqueur' method

	kappa – (optiona) suppression parameter for 'kingsbury' method

	threshold – (optional) minimum keypoint energy of returned keypoints

	max_points – (optional) maximum number of keypoints to return

	upsample_keypoint_energy – is non-None, a string specifying a method used to upscale the keypoint energy map before finding keypoints

	upsample_subands – is non-None, a string specifying a method used to upscale the subband image before finding keypoints

	refine_positions – (optional) should the keypoint positions be refined to sub-pixel accuracy

	skip_levels – (optional) number of levels of the transform to ignore before looking for keypoints

	Returns:	(Px4) array of P keypoints in image co-ordinates

Warning

The interface and behaviour of this function is the subject of an open
research project. It is provided in this release as a preview of
forthcoming functionality but it is subject to change between releases.

The rows of the returned keypoint array give the x co-ordinate, y
co-ordinate, scale and keypoint energy. The rows are sorted in order of
decreasing keypoint energy.

If refine_positions is True then the positions (and energy) of the
keypoints will be refined to sub-pixel accuracy by fitting a quadratic
patch. If refine_positions is False then the keypoint locations will
be those corresponding directly to pixel-wise maxima of the subband images.

The max_points and threshold parameters are cumulative: if both are
specified then the max_points greatest energy keypoints with energy
greater than threshold will be returned.

Usually the keypoint energies returned from the finest scale level are
dominated by noise and so one usually wants to specify skip_levels to be
1 or 2. If skip_levels is 0 then all levels will be used to compute
keypoint energy.

The upsample_subbands and upsample_keypoint_energy parameters are used
to control whether the individual subband coefficients and/org the keypoint
energy map are upscaled by 2 before finding keypoints. If these parameters
are None then no corresponding upscaling is performed. If non-None they
specify the upscale method as outlined in
dtcwt.sampling.upsample().

If method is None, the default 'fauqueur' method is used.

	Name
	Description
	Parameters used

	fauqueur
	Geometric mean of absolute values[1]
	alpha, beta

	bendale
	Minimum absolute value[2]
	none

	kingsbury
	Cross-product of orthogonal subbands
	kappa

[1] Julien Fauqueur, Nick Kingsbury, and Ryan Anderson. Multiscale
Keypoint Detection using the Dual-Tree Complex Wavelet Transform. 2006
International Conference on Image Processing, pages 1625-1628, October
2006. ISSN 1522-4880. doi: 10.1109/ICIP.2006.312656.
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4106857.

[2] Pashmina Bendale, Bill Triggs, and Nick Kingsbury. Multiscale Keypoint
Analysis based on Complex Wavelets. In British Machine Vision Con-ference
(BMVC), 2010.
http://www-sigproc.eng.cam.ac.uk/~pb397/publications/BTK_BMVC_2010_abstract.pdf.

Image sampling

Rescaling and re-sampling high- and low-pass subbands.

	
dtcwt.sampling.sample(im, xs, ys, method=None)

	Sample image at (x,y) given by elements of xs and ys. Both xs and ys
must have identical shape and output will have this same shape. The
location (x,y) refers to the centre of im[y,x]. Samples at fractional
locations are calculated using the method specified by method (or
'lanczos' if method is None.)

	Parameters:	
	im – array to sample from

	xs – x co-ordinates to sample

	ys – y co-ordinates to sample

	method – one of ‘bilinear’, ‘lanczos’ or ‘nearest’

	Raises ValueError:

		if xs and ys have differing shapes

	
dtcwt.sampling.sample_highpass(im, xs, ys, method=None)

	As sample() except that the highpass image is first phase
shifted to be centred on approximately DC.

	
dtcwt.sampling.rescale(im, shape, method=None)

	Return a resampled version of im scaled to shape.

Since the centre of pixel (x,y) has co-ordinate (x,y) the extent of im is
actually \(x \in (-0.5, w-0.5]\) and \(y \in (-0.5, h-0.5]\)
where (y,x) is im.shape. This returns a sampled version of im that
has the same extent as a shape-sized array.

	
dtcwt.sampling.rescale_highpass(im, shape, method=None)

	As rescale() except that the highpass image is first phase
shifted to be centred on approximately DC.

	
dtcwt.sampling.upsample(image, method=None)

	Specialised function to upsample an image by a factor of two using
a specified sampling method. If image is an array of shape (NxMx...) then
the output will have shape (2Nx2Mx...). Only rows and columns are
upsampled, depth axes and greater are interpolated but are not upsampled.

	Parameters:	
	image – an array containing the image to upsample

	method – if non-None, a string specifying the sampling method to use.

If method is None, the default sampling method 'lanczos' is used.
The following sampling methods are supported:

	Name
	Description

	nearest
	Nearest-neighbour sampling

	bilinear
	Bilinear sampling

	lanczos
	Lanczos sampling with window radius of 3

	
dtcwt.sampling.upsample_highpass(im, method=None)

	As upsample() except that the highpass image is first phase
rolled so that the filter has approximate DC centre frequency. The upshot
is that this is the function to use when re-sampling complex subband
images.

Miscellaneous and low-level support functions

A normal user should not need to call these functions but they are documented
here just in case you do.

Useful utilities for testing the 2-D DTCWT with synthetic images

	
dtcwt.utils.appropriate_complex_type_for(X)

	Return an appropriate complex data type depending on the type of X. If X
is already complex, return that, if it is floating point return a complex
type of the appropriate size and if it is integer, choose an complex
floating point type depending on the result of numpy.asfarray().

	
dtcwt.utils.as_column_vector(v)

	Return v as a column vector with shape (N,1).

	
dtcwt.utils.asfarray(X)

	Similar to numpy.asfarray() except that this function tries to
preserve the original datatype of X if it is already a floating point type
and will pass floating point arrays through directly without copying.

	
dtcwt.utils.drawcirc(r, w, du, dv, N)

	Generate an image of size N*N pels, containing a circle
radius r pels and centred at du,dv relative
to the centre of the image. The edge of the circle is a cosine shaped
edge of width w (from 10 to 90% points).

Python implementation by S. C. Forshaw, November 2013.

	
dtcwt.utils.drawedge(theta, r, w, N)

	Generate an image of size N * N pels, of an edge going from 0 to 1
in height at theta degrees to the horizontal (top of image = 1 if angle = 0).
r is a two-element vector, it is a coordinate in ij coords through
which the step should pass.
The shape of the intensity step is half a raised cosine w pels wide (w>=1).

T. E . Gale’s enhancement to drawedge() for MATLAB, transliterated
to Python by S. C. Forshaw, Nov. 2013.

	
dtcwt.utils.reflect(x, minx, maxx)

	Reflect the values in matrix x about the scalar values minx and
maxx. Hence a vector x containing a long linearly increasing series is
converted into a waveform which ramps linearly up and down between minx and
maxx. If x contains integers and minx and maxx are (integers + 0.5), the
ramps will have repeated max and min samples.

	
dtcwt.lowlevel.coldfilt(X, ha, hb)

	Filter the columns of image X using the two filters ha and hb =
reverse(ha). ha operates on the odd samples of X and hb on the even
samples. Both filters should be even length, and h should be approx linear
phase with a quarter sample advance from its mid pt (i.e. \(|h(m/2)| >
|h(m/2 + 1)|\)).

 ext top edge bottom edge ext
Level 1: ! | ! | !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a
Level 2: ! | ! | !
+q filt on x b b a a a a b b
-q filt on o a a b b b b a a

The output is decimated by two from the input sample rate and the results
from the two filters, Ya and Yb, are interleaved to give Y. Symmetric
extension with repeated end samples is used on the composite X columns
before each filter is applied.

Raises ValueError if the number of rows in X is not a multiple of 4, the
length of ha does not match hb or the lengths of ha or hb are non-even.

	
dtcwt.lowlevel.colfilter(X, h)

	Filter the columns of image X using filter vector h, without decimation.
If len(h) is odd, each output sample is aligned with each input sample
and Y is the same size as X. If len(h) is even, each output sample is
aligned with the mid point of each pair of input samples, and Y.shape =
X.shape + [1 0].

	Parameters:	
	X – an image whose columns are to be filtered

	h – the filter coefficients.

	Returns Y:	the filtered image.

	
dtcwt.lowlevel.colifilt(X, ha, hb)

	Filter the columns of image X using the two filters ha and hb =
reverse(ha). ha operates on the odd samples of X and hb on the even
samples. Both filters should be even length, and h should be approx linear
phase with a quarter sample advance from its mid pt (i.e :math:`|h(m/2)| >
|h(m/2 + 1)|).

 ext left edge right edge ext
Level 2: ! | ! | !
+q filt on x b b a a a a b b
-q filt on o a a b b b b a a
Level 1: ! | ! | !
odd filt on . b b b b a a a a a a a a b b b b
odd filt on . a a a a b b b b b b b b a a a a

The output is interpolated by two from the input sample rate and the
results from the two filters, Ya and Yb, are interleaved to give Y.
Symmetric extension with repeated end samples is used on the composite X
columns before each filter is applied.

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	dtcwt 0.7 documentation

 Python Module Index

 d

 			

 		
 d	

 	[image: -]
 	
 dtcwt	

 	
 	
 dtcwt.backend	

 	
 	
 dtcwt.backend.backend_numpy	

 	
 	
 dtcwt.backend.backend_opencl	

 	
 	
 dtcwt.backend.base	

 	
 	
 dtcwt.keypoint	

 	
 	
 dtcwt.lowlevel	

 	
 	
 dtcwt.sampling	

 	
 	
 dtcwt.utils	

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	dtcwt 0.7 documentation

Index

 A
 | B
 | C
 | D
 | F
 | I
 | L
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	

 	appropriate_complex_type_for() (in module dtcwt.utils)

 	as_column_vector() (in module dtcwt.utils)

 	

 	asfarray() (in module dtcwt.utils)

B

 	

 	biort() (in module dtcwt)

C

 	

 	cl_lowpass (dtcwt.backend.backend_opencl.TransformDomainSignal attribute)

 	cl_scales (dtcwt.backend.backend_opencl.TransformDomainSignal attribute)

 	cl_subbands (dtcwt.backend.backend_opencl.TransformDomainSignal attribute)

 	

 	coldfilt() (in module dtcwt.lowlevel)

 	colfilter() (in module dtcwt.lowlevel)

 	colifilt() (in module dtcwt.lowlevel)

D

 	

 	drawcirc() (in module dtcwt.utils)

 	drawedge() (in module dtcwt.utils)

 	dtcwt (module)

 	dtcwt.backend (module)

 	dtcwt.backend.backend_numpy (module)

 	dtcwt.backend.backend_opencl (module)

 	dtcwt.backend.base (module)

 	dtcwt.keypoint (module)

 	dtcwt.lowlevel (module)

 	dtcwt.sampling (module)

 	

 	dtcwt.utils (module)

 	dtwaveifm() (in module dtcwt)

 	dtwaveifm2() (in module dtcwt)

 	dtwaveifm2b() (in module dtcwt)

 	dtwaveifm3() (in module dtcwt)

 	dtwavexfm() (in module dtcwt)

 	dtwavexfm2() (in module dtcwt)

 	dtwavexfm2b() (in module dtcwt)

 	dtwavexfm3() (in module dtcwt)

F

 	

 	find_keypoints() (in module dtcwt.keypoint)

 	

 	forward() (dtcwt.backend.backend_numpy.Transform2d method)

 	

 	(dtcwt.backend.backend_opencl.Transform2d method)

 	(dtcwt.backend.base.Transform2d method)

I

 	

 	inverse() (dtcwt.backend.backend_numpy.Transform2d method)

 	

 	(dtcwt.backend.backend_opencl.Transform2d method)

 	(dtcwt.backend.base.Transform2d method)

L

 	

 	lowpass (dtcwt.backend.backend_numpy.TransformDomainSignal attribute)

 	

 	(dtcwt.backend.base.TransformDomainSignal attribute)

Q

 	

 	qshift() (in module dtcwt)

R

 	

 	ReconstructedSignal (class in dtcwt.backend.base)

 	reflect() (in module dtcwt.utils)

 	

 	rescale() (in module dtcwt.sampling)

 	rescale_highpass() (in module dtcwt.sampling)

S

 	

 	sample() (in module dtcwt.sampling)

 	sample_highpass() (in module dtcwt.sampling)

 	

 	scales (dtcwt.backend.backend_numpy.TransformDomainSignal attribute)

 	

 	(dtcwt.backend.base.TransformDomainSignal attribute)

 	subbands (dtcwt.backend.backend_numpy.TransformDomainSignal attribute)

 	

 	(dtcwt.backend.base.TransformDomainSignal attribute)

T

 	

 	Transform2d (class in dtcwt.backend.backend_numpy)

 	

 	(class in dtcwt.backend.backend_opencl)

 	(class in dtcwt.backend.base)

 	

 	TransformDomainSignal (class in dtcwt.backend.backend_numpy)

 	

 	(class in dtcwt.backend.backend_opencl)

 	(class in dtcwt.backend.base)

U

 	

 	upsample() (in module dtcwt.sampling)

 	

 	upsample_highpass() (in module dtcwt.sampling)

V

 	

 	value (dtcwt.backend.base.ReconstructedSignal attribute)

 Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3.

 _images/lena-1.png

_static/minus.png

_images/lena_error.png

_static/comment-bright.png

_images/3d_dtcwt_directionality.png
3D DT-CWT subband directions for +ve hemisphere quadrant

12 4

1.0 1

0.8

search.html

 Navigation

 		
 index

 		
 modules |

 		dtcwt 0.7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Rich Wareham, Nick Kingsbury, Cian Shaffrey.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_images/lena_no_error.png
w00 200

_images/lena-2.png
0 20 40 60 80100120

0 20

0 60 80100120

O 20 40 60 80100120

0
20
40
60
80

100

A
? 120

0 20 4 60 80 100120

020 40 60 80100120

0 20 40 60 80100120

_images/3d-complex-coeffs.png

_images/lena-3.png
20
40
60
80
100
120

100
120

; i d120 &
0 20 40 60 80100120 0 20 40 60

s

L Ao 2 5
80100120 0 20 40 60 80100120

_images/modified_wavelets.png
(a) Dual-Tree Complex Wavelets: Real Part

Imaginary Part
(b) Modified Complex Wavelets: Real Part

Imaginary Part
(c) Frequency responses of original and modified 1-D filters
3
X"\
’ ~
1 \
2 e 1 N
modified/ voriginal
\
l’ Y
1 ' N
! N
I \
. \
0 . — e L=y . \
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

frequency / output sample rate

_images/sphere-slice.png
1

2

B

_static/down-pressed.png

